Math, asked by Anonymous, 2 months ago

find the derevitive with respect to x and give answer with expliannation​

Attachments:

Answers

Answered by duragpalsingh
12

Answer:

\displaystyle\dfrac{d}{dx}\left(\dfrac{1}{\sin^2x-\cos^2x}\right)=\dfrac{4\cos(x)\sin(x)}{(\sin^2x-\cos^2x)^2}

Step-by-step explanation:

Given,

\displaystyle\dfrac{d}{dx}\left(\dfrac{1}{\sin^2x-\cos^2x}\right)

We know,

\dfrac{d}{dx}\left(\dfrac{1}{f(x)}}\right) = -\dfrac{\frac{d}{dx}f(x)}{(f(x))^2}

Using this identity,

\dfrac{d}{dx}\left(\dfrac{1}{\sin^2x-\cos^2x}}\right) = -\dfrac{\frac{d}{dx}\left(\sin^2x-cos^2x)}{(\sin^2x-\cos^2x)^2}

= -\dfrac{\frac{d}{dx}\left(\sin^2x)-\frac{d}{dx}(cos^2x)}{(\sin^2x-\cos^2x)^2}

=- \dfrac{2\sin(x)\cos(x) - 2\cos(x)(-\sin x)}{(\sin^2x-\cos^2x)^2}\\\\=\dfrac{4\cos(x)\sin(x)}{(\sin^2x-\cos^2x)^2}

Similar questions