Math, asked by 16233, 2 months ago

find the deriavative of

 {\sin}^{ - 1} (x) + \: { \sin}^{ - 1} ( \sqrt{1 - {x}^{2} } )

it is urgent dont spam​

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

y =  \sin^{ - 1} (x)  +  \sin ^{ - 1} ( \sqrt{1 -  {x}^{2} } )  \\

 Let\: x = \sin(\alpha)

  \implies \: y =  \sin^{ - 1} ( \sin( \alpha ) )  +  \sin^{ - 1} ( \sqrt{1 -  \sin^{2} ( \alpha ) } )  \\

 \implies \: y =  \alpha  +  \sin ^{ - 1} ( \cos( \alpha ) )  \\

 \implies \: y =  \alpha  +  \frac{\pi}{2}  -  \sin ^{ - 1} ( \sin( \alpha ) )  \\

 \implies \: y =  \alpha +  \frac{\pi}{2}  -   \alpha  \\

 \implies \: y =  \frac{\pi}{2} \\

 \implies \frac{dy}{dx}  = 0 \\

Similar questions