Math, asked by srawan27, 9 months ago

Find the derivate of the following functions from first principle
(i) -x
(ii) (-x)^-1

Answers

Answered by Anonymous
271

\huge\sf\red{\underline{\underline{Question}}}\::

\sf\green{Find \ the \ derivate \ of \  the \ following }

\sf\green{functions \ from \ first \  principle }

(i) \sf\gray{-x}

(ii) \sf\gray{(-x)^{-1}} \\

\huge\sf\pink{\underline{\underline{Solution}}}\::

\sf\purple{ (i) \ Let \ f(x) = -x. \ According, \ f(x + h) \ = \ -(x + h)} \\\\ \star\:\:\bf\underline\orange{ By \ first \ principle,}

\sf\blue{f'(x)\:=\:\lim_{h \to 0}\:\dfrac{f(x+h)-f(x)}{h}}

⠀⠀⠀\sf\green{=\:\lim_{h \to 0}\:\dfrac{-(x+h)-(-x)}{h}}

⠀⠀⠀\sf\blue{=\:\lim_{h \to 0}\:\dfrac{-x-h-x}{h}}

⠀⠀⠀\sf\green{=\:\lim_{h \to 0}\:\dfrac{-h}{h}}

⠀⠀⠀\sf\blue{=\:\lim_{h \to 0}\:(-1)}

⠀⠀⠀\sf\red{=\:-1} \\\\

\sf\purple{ (ii) \ Let \ f(x) = (-x)^{-1} = \dfrac{1}{-x} = \dfrac{-1}{x}. \ According, \  f(x+h) = \dfrac{1}{(x+h)}} \\\\ \star\:\:\bf \underline\orange{By \  first \ principle,}

\sf\blue{f'(x)\:=\:\lim_{h \to 0}\:\dfrac{f(x+h)-f(x)}{h}}

⠀⠀⠀\sf\green{=\:\lim_{h \to 0}\:\dfrac{1}{h}\Bigg[ \dfrac{-1}{x+h}-\bigg( \dfrac{-1}{x}\bigg) \Bigg]}

⠀⠀⠀\sf\blue{=\:\lim_{h \to 0}\:\dfrac{1}{h}\Bigg[ \dfrac{-1}{x+h}+\dfrac{1}{x}\Bigg]}

⠀⠀⠀\sf\green{=\:\lim_{h \to 0}\:\dfrac{1}{h}\Bigg[ \dfrac{-x+(x+h)}{x(x+h)}\Bigg] }

⠀⠀⠀\sf\blue{=\:\lim_{h \to 0}\:\dfrac{1}{h}\Bigg[ \dfrac{h}{x(x+h)} \Bigg] }

⠀⠀⠀\sf\green{=\:\lim_{h \to 0}\:\dfrac{1}{x(x+h)}}

⠀⠀⠀\sf\blue{=\:\dfrac{1}{x.x}}

⠀⠀⠀\sf\red{=\:\dfrac{1}{x^2}}


Anonymous: Perfect explanation :D
Similar questions