Math, asked by rsibbal18, 11 months ago

find the derivative
4x + 5 sin x
÷
3x + 7 cos x​

Answers

Answered by harendrachoubay
12

The derivative of \dfrac{4x+5\sin x}{3x+7\cos x} = \dfrac{(3x+7\cos x)(4+5\cos x)-(4x+5\sin x)(3-7\sin x)}{(3x+7\cos x)^2}

Step-by-step explanation:

Let y=\dfrac{4x+5\sin x}{3x+7\cos x}

To find, the derivative of \dfrac{4x+5\sin x}{3x+7\cos x} = ?

y=\dfrac{4x+5\sin x}{3x+7\cos x}

Using division formula,

\dfrac{x(\dfrac{u}{v})}{dx} =\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{v^2}

\dfrac{dy}{dx} =\dfrac{(3x+7\cos x)\dfrac{d(4x+5\sin x)}{dx}-(4x+5\sin x)\dfrac{d(3x+7\cos x)}{dx}}{(3x+7\cos x)^2}

\dfrac{dy}{dx} =\dfrac{(3x+7\cos x)(4+5\cos x)-(4x+5\sin x)(3-7\sin x)}{(3x+7\cos x)^2}

∴ The derivative of \dfrac{4x+5\sin x}{3x+7\cos x} = \dfrac{(3x+7\cos x)(4+5\cos x)-(4x+5\sin x)(3-7\sin x)}{(3x+7\cos x)^2}

Similar questions