Math, asked by nainak, 7 months ago

find the derivative and second derivative of given function with respect to corresponding independent variable :
Y= lnx + e^x​

Answers

Answered by abdulraheem000
2

Answer:

Step-by-step explanation:

y=lnx +e^{x}

\frac{dy}{dx}=\frac{d}{dx}lnx+\frac{d}{dx}e^{x}

\frac{dy}{dx}=\frac{1}{x}+e^{x}

\frac{d^{2}y }{dx^{2} } =\frac{d}{dx} \frac{1}{x}+\frac{d}{dx} e^{x}  \\\frac{d^{2}y }{dx^{2} } =\frac{-1}{x^{2} } +e^{x}

Similar questions