Math, asked by PragyaTbia, 1 year ago

Find the derivative by first principle:
\rm \frac{x-1}{2x+7}

Answers

Answered by ujalasingh385
2

Answer:

\mathbf{\frac{d}{dx}[\frac{x\ -\ 1}{2x\ +\ 7}]\ =\ \frac{9}{(2x\ +\ 7)^{2}}}

Step-by-step explanation:

In this question,

We need to find the derivative of \frac{x\ -\ 1}{2x\ +\ 7}

According to the question,

\frac{\mathrm{d} }{\mathrm{d} x}[\frac{x\ -\ 1}{2x\ +\ 7}]

f'(x)  = Lim_{h -0}\frac{(f(x+h) - f(x) )}{h}

=> f'(x)  = Lim_{h-0}\frac{\frac{((x + h - 1)}{(2x + 2h + 7)}\  -\ \frac{(x - 1)}{(2x + 7))}}{h}

=> f'(x)  = Lim_{h-0}\frac{( (x + h - 1) (2x + 7)  - (x - 1)(2x + 2h + 7))}{(h(2x + 2h + 7)(2x + 7))}

=>  f'(x)  = Lim_{h-0}\frac{((2x²+2hx -2x + 7x + 7h - 7)  - (2x² -2x +2hx - 2h + 7x - 7))}{(h(2x + 2h + 7)(2x + 7))}

=>  f'(x)  = Lim_{h-0} \frac{(9h)}{(h(2x + 2h + 7)(2x + 7))}

=>  f'(x)  = Lim_{h-0} \frac{(9)}{((2x + 2h + 7)(2x + 7))}</p><p></p><p>putting h = 0</p><p></p><p>=&gt; f'(x)  = [tex]\frac{9}{(2x + 7)^{2}}

On solving,

\frac{d}{dx}[\frac{x\ -\ 1}{2x\ +\ 7}]\ =\ \frac{9}{(2x\ +\ 7)^{2}}

Hence, \mathbf{\frac{d}{dx}[\frac{x\ -\ 1}{2x\ +\ 7}]\ =\ \frac{9}{(2x\ +\ 7)^{2}}}

Answered by amitnrw
2

Answer:

9/(2x + 7)²

Step-by-step explanation:

f(x)  = (x - 1) / (2x + 7)

f'(x)  = Lim h- 0  (f(x+h) - f(x) ) / h

=> f'(x)  = Lim h-0   ((x + h - 1) /(2x + 2h + 7)   -  (x - 1) / (2x + 7))/h

=> f'(x)  = Lim h-0  ( (x + h - 1) (2x + 7)  - (x - 1)(2x + 2h + 7))/(h(2x + 2h + 7)(2x + 7))

=>  f'(x)  = Lim h-0  ((2x²+2hx -2x + 7x + 7h - 7)  - (2x² -2x +2hx - 2h + 7x - 7))/(h(2x + 2h + 7)(2x + 7))

=>  f'(x)  = Lim h-0  (9h)/(h(2x + 2h + 7)(2x + 7))

=>  f'(x)  = Lim h-0  (9)/((2x + 2h + 7)(2x + 7))

putting h = 0

=> f'(x)  = 9/(2x + 7)²

Similar questions