Find the derivative by first principle:
Answers
Answered by
1
HOPE IT HELPS U ✌️✌️✌️
Attachments:
Answered by
1
Answer:
3√x / 2
Step-by-step explanation:
f(x) = x√x
f'(x) = Lim h -0 ( f(x+ h) - f(x) )/h
=> f'(x) = Lim h- 0 (( x + h)√(x + h) - x√x)/h
=> f'(x) = Lim h- 0 (( x + h)√(x + h) - x√x)/h
=> f'(x) = Lim h- 0 (( x + h)√(x + h) - x√x)/h * (( x + h)√(x + h) + x√x)/(( x + h)√(x + h) + x√x)
=> f'(x) = Lim h- 0 (( x + h)³ - x³)/(h(( x + h)√(x + h) + x√x))
=> f'(x) = Lim h- 0 (h³ + 3x²h + 3xh²)/(h(( x + h)√(x + h) + x√x))
=> f'(x) = Lim h- 0 (h² + 3x² + 3xh)/(( x + h)√(x + h) + x√x))
putting h = 0
=> f'(x) = 3x² / 2 x√x
=> f'(x) = 3√x / 2
Similar questions