find the derivative by removing arbitrary constant A and B , y=Ax³+Bx².
Answers
Answered by
1
Hey there !!!!!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
y=Ax³+Bx²----Equation 1
Differentiating equation 1 wrt "x"
dy/dx = 3Ax²+2Bx
y₁ = 3Ax²+2Bx----Equation 2
Further differentiating
d²y/dx² =6Ax+2B
y₂=6Ax+2B----Equation 3
~~~~~~~~~~~~~~~~~~~~~~~~~
y=Ax³+Bx²----Equation 1
Multiplying Equation 1 with "two"
2y=2Ax³+2Bx²----Equation 4
y₁ = 3Ax²+2Bx----Equation 2
Multiplying equation 2 with "x"
y₁x = 3Ax³+2Bx²----Equation 5
Now Subtracting Equation 4 and Equation 5
y₁x-2y= Ax³
~~~~~~~~~~~~~~~
y₁ = 3Ax²+2Bx----Equation 2
Multiplying equation 2 with "2x"
2y₁x = 6Ax³+4Bx²----Equation 6
y₂=6Ax+2B----Equation 3
Multiplying equation 3 with "x²"
y₂x²=6Ax³+2Bx²----Equation 7
Subtracting equation 6 & 7
2y₁x-y₂x²=2Bx² y₁x-2y= Ax³
y=Ax³+Bx²
y=(y₁x-2y) - (2y₁x-y₂x²)/2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you..............
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
y=Ax³+Bx²----Equation 1
Differentiating equation 1 wrt "x"
dy/dx = 3Ax²+2Bx
y₁ = 3Ax²+2Bx----Equation 2
Further differentiating
d²y/dx² =6Ax+2B
y₂=6Ax+2B----Equation 3
~~~~~~~~~~~~~~~~~~~~~~~~~
y=Ax³+Bx²----Equation 1
Multiplying Equation 1 with "two"
2y=2Ax³+2Bx²----Equation 4
y₁ = 3Ax²+2Bx----Equation 2
Multiplying equation 2 with "x"
y₁x = 3Ax³+2Bx²----Equation 5
Now Subtracting Equation 4 and Equation 5
y₁x-2y= Ax³
~~~~~~~~~~~~~~~
y₁ = 3Ax²+2Bx----Equation 2
Multiplying equation 2 with "2x"
2y₁x = 6Ax³+4Bx²----Equation 6
y₂=6Ax+2B----Equation 3
Multiplying equation 3 with "x²"
y₂x²=6Ax³+2Bx²----Equation 7
Subtracting equation 6 & 7
2y₁x-y₂x²=2Bx² y₁x-2y= Ax³
y=Ax³+Bx²
y=(y₁x-2y) - (2y₁x-y₂x²)/2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you..............
Similar questions