Math, asked by rachelmccafferty, 1 month ago

Find the derivative by the limit process.
f(x)=1-x^2

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) = 1 -  {x}^{2}

So,

\rm :\longmapsto\:f(x + h) = 1 -  {(x + h)}^{2}

Using definition, we have

\rm :\longmapsto\:f'(x) = \lim_{h \to 0}\dfrac{f(x + h) - f(x)}{h}

 \rm \:  \:  =  \: \lim_{h \to 0}\dfrac{\bigg(1 -  {(x + h)}^{2} \bigg) - (1 -  {x}^{2})}{h}

 \rm \:  \:  =  \: \lim_{h \to 0}\dfrac{1 -  {(x + h)}^{2} - 1 +  {x}^{2}  }{h}

 \rm \:  \:  =  \: \lim_{h \to 0}\dfrac{ -  {(x + h)}^{2} +  {x}^{2}  }{h}

 \rm \:  \:  =  \: \lim_{h \to 0}\dfrac{ -  {(x }^{2} +  {h}^{2} + 2hx) +  {x}^{2}  }{h}

 \rm \:  \:  =  \: \lim_{h \to 0}\dfrac{ -  {x }^{2}  -   {h}^{2}  -  2hx+  {x}^{2}  }{h}

 \rm \:  \:  =  \: \lim_{h \to 0}\dfrac{   -   {h}^{2}  -  2hx}{h}

 \rm \:  \:  =  \: \lim_{h \to 0}\dfrac{-h( {h} + 2x)}{h}

 \rm \:  \:  =   - \: \lim_{h \to 0}(h + 2x)

 \rm \:  \:  =  \:  - (0 + 2x)

 \rm \:  \:  =  \:  - 2x

\bf\implies \:\dfrac{d}{dx}(1 -  {x}^{2}) =  -  \: 2x

Additional Information :-

\green{\boxed{ \bf{ \:\dfrac{d}{dx}k = 0}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}x = 1}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} {e}^{x}  =  {e}^{x} }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} {a}^{x}  =  {a}^{x} log(a)}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}logx = \dfrac{1}{x}}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} \sqrt{x}  = \dfrac{1}{2 \sqrt{x} }}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}}

Similar questions