Math, asked by khandelwalkashish200, 4 months ago

find the derivative by using first principle x upon sin x​

Answers

Answered by SrijanShrivastava
2

  \\ \frac{d}{dx} ( \frac{x}{ \sin(x) } )

 \\  =  \lim_{h \to0} (\frac{ \frac{x + h}{ \sin(x + h) } -  \frac{x}{ \sin(x) }  }{h} )

 \\  =  \lim_{h \to0}( \frac{(x + h) \sin(x)  - x \sin(x + h) }{h \sin(x) \sin(x + h)  } )

 \\  =  \lim_{h \to0} \frac{x( \sin(x) -  \sin(x + h)  ) + h \sin(x) }{h \sin(x)  \sin(x + h) }

 \\  \small{ =\frac{1}{ \sin(x) }   + x  \lim_{h \to0} \frac{( \sin(x) -  \sin(x + h))  }{h \sin^{2} (x) } }

   \\     \small{  =  \cosec(x) + \frac{x}{ \sin(x) }  \lim_{h \to0}  \frac{ 1 -  \cos(h)  }{h }  -    \frac{x \cos(x) }{ \sin^{2} (x) }  \lim_{h \to0} \frac{ \sin(h) }{h} }

 =  \small{ \cosec(x)    - x \cot(x) \cosec(x)  }

 =  \frac{ \sin(x) - x \cos(x)  }{ \sin^{2} (x) }

Similar questions