Math, asked by khushirana1723, 7 months ago

Find the derivative of

Attachments:

Answers

Answered by shadowsabers03
5

We need to find:-

\longrightarrow\sf{\dfrac{d}{dx}\left[\dfrac{\log x+e^{-x}}{\sin(2x)}\right]=\,?}

We have, quotient rule,

\longrightarrow\sf{\dfrac{d}{dx}\left(\dfrac{f(x)}{g(x)}\right)=\dfrac{\dfrac{d}{dx}\,\left[f(x)\right]\cdot g(x)-f(x)\cdot\dfrac{d}{dx}\,\left[g(x)\right]}{[g(x)]^2}}

Here,

\longrightarrow\sf{f(x)=\log x+e^{-x}}

\longrightarrow\sf{\dfrac{d}{dx}\,[f(x)]=\dfrac{d}{dx}\left[\log x+e^{-x}\right]}

\longrightarrow\sf{\dfrac{d}{dx}\,[f(x)]=\dfrac{d}{dx}[\log x]+\dfrac{d}{dx}\left[e^{-x}\right]}

By chain rule,

\longrightarrow\sf{\dfrac{d}{dx}\,[f(x)]=\dfrac{1}{x}+\dfrac{d[e^{-x}]}{d[-x]}\cdot\dfrac{d[-x]}{dx}}

\longrightarrow\sf{\dfrac{d}{dx}\,[f(x)]=\dfrac{1}{x}-e^{-x}}

And,

\longrightarrow\sf{g(x)=\sin(2x)}

\longrightarrow\sf{\dfrac{d}{dx}[g(x)]=\dfrac{d}{dx}[\sin(2x)]}

By chain rule,

\longrightarrow\sf{\dfrac{d}{dx}[g(x)]=\dfrac{d[\sin(2x)]}{d[2x]}\cdot\dfrac{d[2x]}{dx}}

\longrightarrow\sf{\dfrac{d}{dx}[g(x)]=2\cos(2x)}

Hence by quotient rule,

\longrightarrow\sf{\dfrac{d}{dx}\left(\dfrac{\log x+e^{-x}}{\sin(2x)}\right)=\dfrac{\sin(2x)\left[\dfrac{1}{x}-e^{-x}\right]-2\cos(2x)\left[\log x+e^{-x}\right]}{\sin^2(2x)}}

\longrightarrow\underline{\underline{\sf{\dfrac{d}{dx}\left(\dfrac{\log x+e^{-x}}{\sin(2x)}\right)=\dfrac{\sin(2x)-x\,\sin(2x)\,e^{-x}-2x\cos(2x)\log x-2x\cos(2x)\,e^{-x}}{x\,\sin^2(2x)}}}}

Similar questions