find the derivative of
Attachments:
Answers
Answered by
2
hello users ...
solution:-
we know that:
d(u*v)/dx = u * d(v)/dx + v * d(u)/dx
And
And
Here,
d [(x³ - 6x)(2 - 4x³) ] / dx
= (x³ - 6x) * d(2 - 4x³) / dx + (2 - 4x³) * d (x³ - 6x) / dx
= (x³ - 6x) * ( -4 * 3 * x² ) + (2 - 4x³) * ( 3 * x² - 6 )
= -12x² * (x³ - 6x) + (2 - 4x³) *( 3x² - 6 )
= [tex][-12 x^{5} + 72x^{3} ] + [ 2*( 3x^{2} - 6 ) - 4 x^{3} ( 3 x^{2} - 6 )] [/tex]
=
=
= Answer
# hope it helps # :)
solution:-
we know that:
d(u*v)/dx = u * d(v)/dx + v * d(u)/dx
And
And
Here,
d [(x³ - 6x)(2 - 4x³) ] / dx
= (x³ - 6x) * d(2 - 4x³) / dx + (2 - 4x³) * d (x³ - 6x) / dx
= (x³ - 6x) * ( -4 * 3 * x² ) + (2 - 4x³) * ( 3 * x² - 6 )
= -12x² * (x³ - 6x) + (2 - 4x³) *( 3x² - 6 )
= [tex][-12 x^{5} + 72x^{3} ] + [ 2*( 3x^{2} - 6 ) - 4 x^{3} ( 3 x^{2} - 6 )] [/tex]
=
=
= Answer
# hope it helps # :)
Answered by
3
Answer:
- 24 x⁵ + 96 x³ + 6 x² - 12
Step-by-step explanation:
Let say :
y = ( x³ - 6 x ) ( 2 - 4 x³ )
= > y = 2 x³ - 4 x⁶ - 12 x + 24 x⁴
Now :
Diff. w.r.t. :
= > d y / d x = 6 x² - 24 x⁵ - 12 + 96 x³
= > d y / d x = - 24 x⁵ + 96 x³ + 6 x² - 12
Hence we get required answer! .
Read more!
If y = tan ( x + y ) , then find d y / d x.
https://brainly.in/question/17972971
Similar questions