Math, asked by ah9635925, 3 months ago

find the derivative of (2x +3) using first principle​

Answers

Answered by mathdude500
4

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  ⟼ \: Let  \: f(x)  \: =  \: 2x + 3

\tt \:  ⟼ \: Change  \: x  \: \tt \:  ⟼ \: x  \: + \:  h

\tt \:  ⟼ \: f(x+ h) = \: 2(x + h) + 3 = 2x + 2h + 3

\tt \:  ⟼By  \: definition \: of \: first \: principle

\tt \:  ⟼ \: f'(x) \:  =  \: \lim_{ h\to0} \dfrac{ f(x + h) - f(x)}{h }

\tt \:  ⟼ \: f'(x) \:  =  \: \lim_{ h\to0}\dfrac{(2x + 2h + 3) - (2x + 3)}{h}

\tt \:  ⟼ \: f'(x) \:  =  \: \lim_{ h\to0}\dfrac{ \cancel{2x} + 2h \:  +  \cancel3 -  \cancel{2x} -  \cancel3}{h}

\tt \:  ⟼ \: f'(x) \:  =  \: \lim_{ h\to0}\dfrac{2 \cancel h}{ \cancel h}

 \large \boxed{\tt\implies \:f'(x) \:  =  \: 2}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions