Math, asked by issackmeysuna, 4 months ago

Find the derivative of 5÷3 root x

Answers

Answered by jeetsachdeva981
0

Step-by-step explanation:

if question is (5/3)*sqft(x) then see the photo

Attachments:
Answered by Asterinn
8

We have to find derivative of (5/3) √x

  \rm \implies   \dfrac{d \bigg(\dfrac{5 \:  \sqrt{x} }{3}  \bigg)}{dx}  \\  \\  \\ \rm \implies    \dfrac{5}{3}  \times \dfrac{d ({\:  \sqrt{x} } )}{dx} \\  \\  \\ \rm \implies    \dfrac{5}{3}  \times \dfrac{d ({\:   {x}^{ \frac{1}{2} }  } )}{dx} \\  \\  \\ \rm \implies    \dfrac{5}{3}  \times   \dfrac{1}{2}  \times {\:   {(x)}^{ \frac{1}{2}  - 1}  } \\  \\  \\ \rm \implies    \dfrac{5}{3}  \times   \dfrac{1}{2}  \times {\:   {(x)}^{  \frac{ - 1}{2}  }  } \\  \\  \\ \rm \implies    \dfrac{5}{6}  \times  \frac{1}{ {x}^{  \frac{ - 1}{2} } } \\  \\  \\ \rm \implies    \dfrac{5}{6 \:  \sqrt{x} }

Additional Information :

\boxed{\boxed{\begin{minipage}{5cm}\displaystyle\circ\sf\;\dfrac{d}{dx}(sin\;x)=cosx \\\\ \circ \;\dfrac{d}{dx}(cos\;x) = -sinx \\\\ \circ \; \dfrac{d}{dx}(tan\;x) = sec^{2}x \\\\ \circ\; \dfrac{d}{dx}(cot\;x) = -csc^{2}x \\\\ \circ \; \dfrac{d}{dx}(sec\;x) = secx \cdot tanx \\\\ \circ \; \dfrac{d}{dx}(csc\;x) = -cscx \cdot cotx \\\\ \circ\; \dfrac{d}{dx}(sinh\;x)=coshx \\\\ \circ\; \dfrac{d}{dx}(cosh\;x)= sinhx \\\\ \circ\;\dfrac{d}{dx}(tanh\;x)=sech^{2}h \\\\ \circ\;\dfrac{d}{dx}(coth\;x)=-csch^{2}x \\\\ \circ\;\dfrac{d}{dx}(sech\;x) =-sechx \cdot tanhx \\\\ \circ\;\dfrac{d}{dx}(csch\;x) = -cschx \cdot cothx\end{minipage}}}


Anonymous: Outstanding (:
Similar questions