Math, asked by gawde8621, 2 months ago

find the derivative of a/x^4 - b/x^2 + cos x​

Answers

Answered by mathdude500
1

Identities Used :-

 \boxed{ \red{ \bf \: \dfrac{d}{dx}  {x}^{n}  =  {nx}^{n - 1} }}

 \boxed{ \red{ \bf \: \dfrac{d}{dx} cosx =  - sinx}}

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: y = \dfrac{a}{ {x}^{4} }  - \dfrac{b}{ {x}^{2} }  + cosx

\rm :\longmapsto\:y =  {ax}^{ - 4}  -  {bx}^{ - 2}  + cosx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}( {ax}^{ - 4}  -  {bx}^{ - 2}  + cosx)

\rm :\longmapsto\:\dfrac{dy}{dx}= \dfrac{d}{dx}{ax}^{ - 4}  -  \dfrac{d}{dx}{bx}^{ - 2}  + \dfrac{d}{dx}cosx

\rm :\longmapsto\:\dfrac{dy}{dx}= a\dfrac{d}{dx}{x}^{ - 4}  -  b\dfrac{d}{dx}{x}^{ - 2}   - sinx

\rm :\longmapsto\:\dfrac{dy}{dx} = a( - 4 {x}^{( - 4 - 1)}) - b( - 2 {x}^{(- 2 - 1)}) - sinx

\rm :\longmapsto\:\dfrac{dy}{dx} = - 4a {x}^{ - 5}  + 2 b{x}^{ -3} - sinx

\rm :\longmapsto\:\dfrac{dy}{dx} =  - \dfrac{4a}{ {x}^{5}}  + \dfrac{2b}{ {x}^{3} }  - sinx

Additional Information :-

 \boxed{ \red{ \bf \: \dfrac{d}{dx} sinx = cosx}}

 \boxed{ \red{ \bf \: \dfrac{d}{dx} {e}^{x}  =  {e}^{x} }}

 \boxed{ \red{ \bf \: \dfrac{d}{dx} {a}^{x}  =  {a}^{x} log(a)}}

 \boxed{ \red{ \bf \: \dfrac{d}{dx} tanx =  {sec}^{2} x}}

 \boxed{ \red{ \bf \: \dfrac{d}{dx} cotx =   - {cosec}^{2} x}}

 \boxed{ \red{ \bf \: \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x)}}

 \boxed{ \red{ \bf \: \dfrac{d}{dx} u.v \:  =  \: u \: \dfrac{d}{dx}v \:  + v \: \dfrac{d}{dx}u}}

 \boxed{ \red{ \bf \: \dfrac{d}{dx} \dfrac{u}{v}  = \dfrac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }}}

Similar questions