Find the derivative of :-
(Ax + B)^m(Cx + D)^n
Answers
Answered by
2
Step-by-step explanation:
f(x)=(ax+b) n (cx+d) n
f(x)=(ax+b) n (cx+d) nu=(ax+b) n ⇒u ′ =an(ax+b) n−1
f(x)=(ax+b) n (cx+d) nu=(ax+b) n ⇒u ′ =an(ax+b) n−1v=(cx+d) n ⇒v ′ =cn(cx+d) n−1
f(x)=(ax+b) n (cx+d) nu=(ax+b) n ⇒u ′ =an(ax+b) n−1v=(cx+d) n ⇒v ′ =cn(cx+d) n−1f ′ (x)=(uv) ′
f(x)=(ax+b) n (cx+d) nu=(ax+b) n ⇒u ′ =an(ax+b) n−1v=(cx+d) n ⇒v ′ =cn(cx+d) n−1f ′ (x)=(uv) ′=uv ′ +vu ′
f(x)=(ax+b) n (cx+d) nu=(ax+b) n ⇒u ′ =an(ax+b) n−1v=(cx+d) n ⇒v ′ =cn(cx+d) n−1f ′ (x)=(uv) ′=uv ′ +vu ′=(ax+b) n cn(cx+b) n−1 +(cx+b) n an(ax+b) n−1
Similar questions