Math, asked by dvrssarma, 1 year ago

Find the derivative of cos ax by using the first principle method

Answers

Answered by krn1945
7

Step-by-step explanation:

if it was helpful to u I am thankful

Attachments:
Answered by swethassynergy
5

cos ax derivative by first principle method is - a sin ax.

Step-by-step explanation:

Given:

cos ax

To Find:

cos ax derivative by first principle method.

Formula Used:

Function y= f(x)

Derivative of f(x) by first principle

f'(x)=  \lim_{h \to \ 0 }  \frac{f(x+h)-f(h)}{h}    ------------- formula no. 01

Solution:

As given- cos ax

f(x) =cosax \\f(x+h) = cos a( x+h) = cos( ax+ah)  

Applying the formula no. 01.

f'(x)=  \lim_{h \to \ 0 }  \frac{cos(ax+ah)- cos ax}{h}

        =  \lim_{h \to \ 0 }  \frac{-2sin(\frac{ax+ah+ax}{2} ) sin(\frac{ax+ah-ax}{2} )}{h}

       =  \lim_{h \to \ 0 }  \frac{-2sin(\frac{2ax+ah}{2} ) sin(\frac{ah}{2} )}{h}

      =  \lim_{h \to \ 0 }  -2 sin( ax+\frac{ah}{2} ) .  \lim_{h \to \ 0} \frac{sin ( \frac{ah}{2} )}{h}

      = -2 \lim_{h \to \ 0 }   sin( ax+\frac{ah}{2} ) .  \lim_{h \to \ 0} \frac{sin ( \frac{ah}{2} )}{h}

     =  \lim_{h \to \ 0 }  -2 sin( ax+\frac{ah}{2} ) .  \lim_{h \to \ 0} \frac{sin ( \frac{ah}{2} )}{\frac{ah}{2} \times \frac{2}{a}  }

    =  \lim_{h \to \ 0 }  -2 sin( ax+\frac{ah}{2} ) . \frac{a}{2}  \lim_{h \to \ 0} \frac{sin ( \frac{ah}{2} )}{\frac{ah}{2}   }

    Applying formula   \lim_{h \to \ 0} \frac{sin ( \frac{ah}{2} )}{\frac{ah}{2}   } =1

     = -2 sin( ax+\frac{a(0)}{2} ) .\frac{a}{2} (1)

    = -a sin(ax+0)

    =-a sin\ ax

Thus, cos ax derivative by first principle method is  - a sin ax.

Similar questions