Math, asked by bb1268751, 9 months ago

Find the derivative of cos inverse (x-1/x)/(x+1/x) by proper substitution method

Answers

Answered by shadowsabers03
0

Let,

\quad

\displaystyle\longrightarrow\sf {f(x)=\cos^{-1}\left (\dfrac {x-\frac {1}{x}}{x+\frac {1}{x}}\right)}

\quad

\displaystyle\longrightarrow\sf {f(x)=\cos^{-1}\left (\dfrac {\frac {x^2-1}{x}}{\frac {x^2+1}{x}}\right)}

\quad

\displaystyle\longrightarrow\sf {f(x)=\cos^{-1}\left (\dfrac {x^2-1}{x^2+1}\right)\quad\quad\dots (1)}

\quad

Let,

\quad

\displaystyle\mapsto\sf {g(x)=\dfrac {x^2-1}{x^2+1}}

\quad

Then (1) becomes,

\quad

\displaystyle\longrightarrow\sf {f(x)=\cos^{-1}\left (g(x)\right)}

\quad

Taking the derivative wrt \displaystyle\sf {x,}

\quad

\displaystyle\longrightarrow\sf {f'(x)=\dfrac {d[\cos^{-1}\left (g(x)\right)]}{dx}}

\quad

By chain rule,

\quad

\displaystyle\longrightarrow\sf {f'(x)=\dfrac {d[\cos^{-1}\left (g(x)\right)]}{d[g(x)]}\cdot\dfrac {d[g(x)]}{dx}\quad\quad\dots (2)}

\quad

Well,

\quad

\displaystyle\mapsto\sf {\dfrac {d[\cos^{-1}\left (g(x)\right)]}{d[g(x)]}=-\dfrac {1}{\sqrt{1-(g(x))^2}}}

\quad

\displaystyle\mapsto\sf {\dfrac {d[\cos^{-1}\left (g(x)\right)]}{d[g(x)]}=-\dfrac {1}{\sqrt{1-\left(\dfrac {x^2-1}{x^2+1}\right)^2}}}

\quad

\displaystyle\mapsto\sf {\dfrac {d[\cos^{-1}\left (g(x)\right)]}{d[g(x)]}=-\dfrac {1}{\sqrt{\dfrac {(x^2+1)^2-(x^2-1)^2}{(x^2+1)^2}}}}

\quad

\displaystyle\mapsto\sf {\dfrac {d[\cos^{-1}\left (g(x)\right)]}{d[g(x)]}=-\dfrac {x^2+1}{\sqrt{(x^2+1)^2-(x^2-1)^2}}}

\quad

\displaystyle\mapsto\sf {\dfrac {d[\cos^{-1}\left (g(x)\right)]}{d[g(x)]}=-\dfrac {x^2+1}{2x}}

\quad

And,

\quad

\displaystyle\mapsto\sf {\dfrac {d[g(x)]}{dx}=\dfrac {d}{dx}\left (\dfrac {x^2-1}{x^2+1}\right)}

\quad

By quotient rule,

\quad

\displaystyle\mapsto\sf {\dfrac {d[g(x)]}{dx}=\dfrac {2x(x^2+1)-2x(x^2-1)}{(x^2+1)^2}}

\quad

\displaystyle\mapsto\sf {\dfrac {d[g(x)]}{dx}=\dfrac {4x}{(x^2+1)^2}}

\quad

Then (2) becomes,

\quad

\displaystyle\longrightarrow\sf {f'(x)=-\dfrac {x^2+1}{2x}\cdot\dfrac {4x}{(x^2+1)^2}}

\quad

\displaystyle\longrightarrow\sf {f'(x)=-\dfrac {2}{x^2+1}}

\quad

That is,

\quad

\displaystyle\longrightarrow\sf {\underline {\underline {\dfrac {d}{dx}\left [\cos^{-1}\left (\dfrac {x-\frac {1}{x}}{x+\frac {1}{x}}\right)\right]=-\dfrac {2}{x^2+1}}}}

Similar questions