Math, asked by Abidkatalur6738, 1 year ago

Find the derivative of cos x square - sin 2x raise to 5

Answers

Answered by Anonymous
17

\boxed{\textbf{\large{Step-by-step explanation:}}}

Given function is

y =  ( \cos( {x}^{2} )  -  \sin( {2x}^{5} )

Differentiation wrt x

 \frac{dy}{dx}  =  \frac{d}{dx}( \cos( {x}^{2} )   -  \sin( {(2x}^{5} ) ) \\

 =  -  \sin( {x}^{2} )  \times  \frac{d}{dx} ( {x}^{2} ) \\  \:  \:  \:  \:  \:  \:  \:  -  \cos( {2x}^{5}   \times  \frac{d}{dx} ( {2x}^{5}

 =  -  \sin( {x}^{2} )  \times 2x  -  \cos( {2x}^{5} )  \times 10 {x}^{4}

 =  - ( 2x\sin( {x}^{2} )   + 10 {x}^{4}  \cos(2 {x}^{5} ) )

 =  -  \sin( {x}^{2} )  \times 2x   -  \cos( {(2x}^{5} )  \times 10 {x}^{4}

 =  -   (2x) \sin( {x}^{2} ) - (10 {x}^{4} )\cos( {(2x}^{5} )

 =  -2 ( x\sin( {x}^{2} )   + 5 {x}^{4}  \cos(2 {x}^{5} ) )

\frac{dy}{dx}=-2( x\sin( {x}^{2} )+ 5 {x}^{4}  \cos(2 {x}^{5} ) )\\

Similar questions