Math, asked by rohangarag999, 1 month ago

.Find the derivative of

cos x

with respect to “

x

” from first principles.​

Answers

Answered by mahendra15aug
0

 \frac{d\cos(x)}{dx}  \\ y =  \cos(x)    \\  \frac{dy}{dx}  =  \frac{y2 - y1}{x2 - x1} \\  dy = y2 - y1 \: (limiting \: delta \: x \: tends \: to \: zero) \\ dx = x2 - x1 \\ delta \: x + x1 = x2 \\  same \: as \: y \:  \\ delta \: y  + y1 = y2 \\  \frac{dy}{dx}  =  \frac{d \cos(x + delta \: x)  -  \cos(x) }{delta \: x + x1 - x1}  \\  \cos(a + b)  =  \cos(a) \cos(b)  -  \sin(a)  \sin(b)  \\  \frac{d \cos(x)  \cos(delta \: x)  -  \sin(x)  \sin(delta \: x )-  \cos(x) }{delta \: x}  \\   \\  \frac{ \cos(x) -  \sin(x) (delta \: x) -  \cos(x)  }{delta \: x }   \:  \:  \:  \:  \:  \:  \:  because  (\cos(delta \: x)  = 1 \:  \: (sin(delta \: x) = delta \: x\\  \frac{ \ - sin(x)  (delta \: x)}{delta \: x}  =  -  \sin(x)  \\  \frac{d \cos(x) }{dx}  =  -  \sin(x)

HAVE A GOOD DAY!!!

Similar questions