find the derivative of cosinverse (4xcube-3x)
Answers
Answer:
- 3 / √(1 - x² )
Step-by-step explanation:
To find---> Derivative of Cos⁻¹ ( 4x³ - 3x )
Solution--->
Let
y = Cos⁻¹ ( 4x³ - 3x)
Putting x = Cosθ => θ = Cos⁻¹x
y = Cos⁻¹ ( 4 Cos³θ - 3 Cosθ )
We have a formula
Cos 3A = 4 Cos³A - 3CosA ,Applying it here
= Cos⁻¹ ( Cos3θ )
= 3 θ
= 3 Cos⁻¹x
Differentiating with respect to x
dy/dx = 3 d / d x ( Cos⁻¹x )
= 3 { - 1 / √(1 - x² ) }
= - 3 / √(1 - x² )
Additional information
1) Sin2A = 2 SinA CosA
= 2 tanA / 1 + tan²A
2) Cos2A = 2 Cos²A - 1
= 1 - 2 Sin²A
= Cos²A - Sin²A
= 1 - tan²A / 1 + tan²A
3) tan2A = 2 tanA / 1 - tan²A
4) Sin3A = 3 SinA - 4 Sin³A
Answer:
Step-by-step explanation:
Cos⁻¹ ( 4x³ - 3x )
Let
y = Cos⁻¹ ( 4x³ - 3x)
x = Cosθ
=> θ = Cos⁻¹x
y = Cos⁻¹ ( 4 Cos³θ - 3 Cosθ )
By a formula
Cos 3A = 4 Cos³A - 3CosA ,
= Cos⁻¹ ( Cos3θ )
= 3 θ
= 3 Cos⁻¹x
now by differentiation
dy/dx = 3 d / d x ( Cos⁻¹x )
= 3 { - 1 / √(1 - x² ) }
= - 3 / √(1 - x² )