Math, asked by premtelu, 4 months ago

find the derivative of cosx/sinx+cosx​

Answers

Answered by 1994sitthiphorn
0

Answer:

(-1+sin³x)/sin²x

Step-by-step explanation:

d( cosx/sinx + cosx)/dx

= d(cosx/sinx)/dx + d(cosx)/dx

= {[(sinx)d(cosx)/dx - (cosx)d(sinx)/dx]/sin²x}+(-sinx)

={[(sinx)(-sinx)-(cosx)(cosx)]/sin²x} - sinx

= [-sin²x - cos²x]/sin²x} - sinx

= -1/sin²x - sinx

=-1/sin²x - sin³x/sin²x

= (-1+sin³x)/sin²x

Similar questions