Math, asked by foxhound480000, 8 months ago

find the derivative of cosx^tanx=

Answers

Answered by BrainlyTornado
3

\rule{200}{2}

ANSWER:

The \:  \: derivative \:  \: of \\ (cosx)^{tanx} = (\log ( \cos x) - { \sin}^{2} x)(cosx)^{ \tan x - 2}

\rule{200}{2}

GIVEN:

{(cosx)}^{tanx}

\rule{200}{2}

TO FIND:

The \:  \: derivative \:  \: of \:  \: (cosx)^{tanx}

\rule{200}{2}

EXPLANATION:

Let \:  \:  y = {(cosx)}^{tanx}

Take log on both sides

 \log  y =  \log {( \cos x)}^{ \tan x}

 \boxed{ \large{  \bold{ \log x^{y} = y \log x }}}

 \log  y =  \tan x \log ( \cos x)

Differentiate w.r.t x

  \boxed{ \large {\bold{\dfrac{d}{dx} ( \log x) =  \dfrac{1}{x} }}}

  \boxed{ \large {\bold{\dfrac{d}{dx} (uv) =  uv'  + vu' }}}

  \boxed{ \large {\bold{\dfrac{d}{dx} ( \tan x) =  \sec^{2}x}}}

 \left( \dfrac{1}{y} \right)\dfrac{dy}{dx} =  \tan x\left( \dfrac{1}{ \cos x}\right) \dfrac{d}{dx} ( \cos x) + \log ( \cos x)( { \sec}^{2} x)

  \boxed{ \large {\bold{\dfrac{d}{dx} ( \cos x) =   - \sin x}}}

 \left( \dfrac{1}{y} \right)\dfrac{dy}{dx} =  \tan x\left( \dfrac{1}{ \cos x}\right) ( -  \sin x) + \log ( \cos x)( { \sec}^{2} x)

  \boxed{ \large {\bold{\dfrac{  - \sin x}{ \cos x} =   - \tan x}}}

 \left( \dfrac{1}{y} \right)\dfrac{dy}{dx} =  \tan x( - \tan x) + \log ( \cos x)( { \sec}^{2} x)

 \left( \dfrac{1}{y} \right)\dfrac{dy}{dx} =   \log ( \cos x)( { \sec}^{2} x) -  { \tan}^{2} x

  \boxed{ \large {\bold{\sec^{2}  x=    \frac{1}{  { \cos}^{2}x }} }}

\boxed{ \large {\bold{\tan^{2}  x=    \frac{ { \sin}^{2}x }{  { \cos}^{2}x }} }}

 \left( \dfrac{1}{y} \right)\dfrac{dy}{dx} =   \log ( \cos x)\dfrac{1}{ \cos^{2}x } -   \dfrac{{ \sin}^{2} x}{ \cos^{2}x }

  \dfrac{dy}{dx} =   y \dfrac{(\log ( \cos x) - { \sin}^{2} x)}{ \cos^{2} x}

\boxed{ \large {\bold{{ \frac{{y}^{x} }{ {y}^{2} } } =  {y}^{x - 2} } }}

 \dfrac{y}{  { \cos}^{2} x} =  \dfrac{{(cosx)}^{tanx} }{ { \cos}^{2} x}  \\  \\  \\ \dfrac{y}{  { \cos}^{2} x} = (cosx)^{tanx - 2}

  \dfrac{dy}{dx} = (\log ( \cos x) - { \sin}^{2} x)(cosx)^{ \tan x - 2}

\rule{200}{2}

Similar questions