Math, asked by firefliesnova166, 1 day ago

find the derivative of (cosx)^x+ x^cosx.? plz help me fastly..
 {cosx}^{x}  +  {x}^{cosx}

Answers

Answered by senboni123456
1

Step-by-step explanation:

Consider the general formula

Let  y={f(x)}^{g(x)}\\

Then,

 \ln(y)  = g(x). \ln \{ f(x)\}

 \implies  \frac{1}{y} . \frac{dy}{dx}   =  \frac{d}{dx}    \bigg[  g(x). \ln \{ f(x)\} \bigg] \\

 \implies  \frac{dy}{dx}   =y.  \frac{d}{dx}    \bigg[  g(x). \ln \{ f(x)\} \bigg] \\

 \implies  \frac{dy}{dx}   = { \{ f(x)\}}^{g(x)} .  \frac{d}{dx}    \bigg[  g(x). \ln \{ f(x)\} \bigg] \\

Using this formula, we will find the derivative of the given question

Now,

Let,

y =  \{  \cos(x) \}^{x}  +  { \{x \}}^{ \cos(x) }  \\

 \implies \:  \frac{dy}{dx}  =  \{  \cos(x) \}^{x} . \frac{d}{dx} \bigg \{ x. \ln( \cos(x) ) \bigg\}  +  { \{x \}}^{ \cos(x) } . \frac{d}{dx} \bigg \{  \cos(x) .  \ln(x)  \bigg\}  \\

 \implies \:  \frac{dy}{dx}  =  \{  \cos(x) \}^{x} .  \bigg \{  \ln( \cos(x) )\frac{d}{dx}  (x) + x\frac{d}{dx} \{ \ln( \cos(x) ) \}\bigg\}  +  { \{x \}}^{ \cos(x) } .  \bigg \{  \ln(x) \frac{d}{dx} \{\cos(x)  \} +  \cos(x) \frac{d}{dx} \{ \ln(x) \} \bigg\}  \\

 \implies \:  \frac{dy}{dx}  =  \{  \cos(x) \}^{x} .  \bigg \{  \ln( \cos(x) ).1 + x. \frac{ -  \sin(x) }{ \cos(x) } \bigg\}  +  { \{x \}}^{ \cos(x) } .  \bigg \{  \ln(x) . - \sin(x)  +  \cos(x). \frac{1}{x}   \bigg\}  \\

 \implies \:  \frac{dy}{dx}  =  \{  \cos(x) \}^{x} .  \bigg \{  \ln( \cos(x) )  -  x \tan(x)  \bigg\}  +  { \{x \}}^{ \cos(x) } .  \bigg \{   - \sin(x). \ln(x)  + \frac{ \cos(x) }{x}   \bigg\}  \\

Similar questions