Find the derivative of Cot^-1(√1+x^2 -1/x)
Answers
Answer:
Step-by-step explanation:
To find ---->
Concept used ---->
1)
2)
3)
4)
5)
Solution---->
]
= {cot}^{ - 1} ( \dfrac{sec \alpha - 1}{tan \alpha } )=cot−1(tanαsecα−1)
= {cot}^{ - 1} ( \: \dfrac{ \dfrac{1}{cos \alpha } - 1 }{ \dfrac{sin \alpha }{cos \alpha } } \: )=cot−1(cosαsinαcosα1−1)
= {cot}^{ - 1} ( \: \dfrac{ \dfrac{1 - cos \alpha }{cos \alpha } }{ \dfrac{sin \alpha }{cos \alpha } } \: )=cot−1(cosαsinαcosα1−cosα)
= {cot}^{ - 1} ( \dfrac{1 - cos \alpha }{sin \alpha } \: )=cot−1(sinα1−cosα)
= {cot}^{ - 1} ( \: \dfrac{1 - cos \alpha }{sin \alpha } \: )=cot−1(sinα1−cosα)
= {cot}^{1} ( \: \dfrac{2 {sin}^{2} \dfrac{ \alpha }{2} }{2sin \dfrac{ \alpha }{2}cos \dfrac{ \alpha }{2} } \: )=cot1(2sin2αcos2α2sin22α)
= {cot}^{ - 1} ( \: tan \dfrac{ \alpha }{2} \: )=cot−1(tan2α)
= {cot}^{ - 1} ( \: cot \: ( \dfrac{\pi}{2} \: - \dfrac{ \alpha }{2} \: ) \: )=cot−1(cot(2π−2α))
= \dfrac{\pi}{2} \: - \dfrac{ \alpha }{2}=2π−2α
y= \dfrac{\pi}{2} - \dfrac{1}{2} \: {tan}^{ - 1} xy=2π−21tan−1x
differentiating \: with \: respect \: to \: x \:differentiatingwithrespecttox
\dfrac{dy}{dx} = \dfrac{d}{dx} ( \dfrac{\pi}{2} ) \: - \dfrac{d}{dx} ( \dfrac{1}{2} {tan}^{ - 1} x \: )dxdy=dxd(2π)−dxd(21tan−1x)
\dfrac{dy}{dx} \: = 0 \: - \dfrac{1}{2} \: ( \: \dfrac{1}{1 + {x}^{2} } \: )dxdy=0−21(1+x21)
\dfrac{dy}{dx} \: = - \dfrac{1}{2(1 + {x}^{2}) }dx[/tex]