Math, asked by Chinkoo465, 10 months ago

Find the derivative of Cot^-1(√1+x^2 -1/x)

Answers

Answered by rishu6845
3

Answer:

 \dfrac{dy}{dx}  \:  =  \dfrac{1}{2(1 +  {x}^{2}) }

Step-by-step explanation:

To find ---->

derivative \: of \:  \\  {cot}^{ - 1}( \dfrac{  \sqrt{1 +  {x}^{2}  } - 1  }{x}  )

Concept used ---->

1)

1 +  {tan}^{2}  \alpha  =  {sec}^{2} \alpha

2)

1 - cos \alpha  = 2 {sin}^{2} \dfrac{ \alpha }{2}

3)

sin \alpha  = 2 \: sin \dfrac{ \alpha }{2}  \: cos \dfrac{ \alpha }{2}

4)

 {cot}^{ - 1} ( \: cot \alpha  \: ) =  \alpha

5)

 \dfrac{d}{dx}  {tan}^{1} x =  \dfrac{1}{1 +  {x}^{2} }

Solution---->

y =  {cot}^{ - 1} ( \:  \dfrac{ \sqrt{1 +  {x}^{2} } - 1 }{x}  \: )

let \:  \:  \: x \:  = tan \alpha  \\  =  >  \alpha  \:  =  {tan}^{ - 1} x

 =  > y =  {cot}^{ - 1}(  \dfrac{ \sqrt{1 +  {tan}^{2} \alpha  } - 1 }{tan \alpha } )

 =  {cot}^{ - 1} (  \dfrac{ \sqrt{sec ^{2} \alpha  }  - 1}{tan \alpha } )

 =  {cot}^{ - 1} ( \dfrac{sec \alpha  - 1}{tan \alpha } )

 =  {cot}^{ - 1} (  \: \dfrac{ \dfrac{1}{cos \alpha } - 1 }{ \dfrac{sin \alpha }{cos \alpha } }  \: )

 =  {cot}^{ - 1} ( \:  \dfrac{ \dfrac{1 - cos \alpha }{cos \alpha } }{ \dfrac{sin \alpha }{cos \alpha } }  \: )

 =  {cot}^{ - 1} ( \dfrac{1 - cos \alpha }{sin \alpha }  \: )

 =  {cot}^{ - 1} ( \:  \dfrac{1 - cos \alpha }{sin \alpha }  \: )

 =  {cot}^{1} ( \:  \dfrac{2 {sin}^{2} \dfrac{ \alpha }{2}  }{2sin \dfrac{ \alpha }{2}cos \dfrac{ \alpha }{2}  }  \: )

 =  {cot}^{ - 1}  ( \: tan \dfrac{ \alpha }{2}  \: )

 =  {cot}^{ - 1} ( \: cot \: ( \dfrac{\pi}{2}  \:  -  \dfrac{ \alpha }{2}  \: ) \: )

 =  \dfrac{\pi}{2}  \:  -  \dfrac{ \alpha }{2}

 y=  \dfrac{\pi}{2}  -  \dfrac{1}{2}  \:  {tan}^{ - 1} x

differentiating \: with \: respect \: to \: x \:

 \dfrac{dy}{dx}  =  \dfrac{d}{dx} ( \dfrac{\pi}{2} ) \:  -  \dfrac{d}{dx} ( \dfrac{1}{2}  {tan}^{ - 1} x \: )

 \dfrac{dy}{dx}  \:  = 0 \:  -  \dfrac{1}{2}  \:  ( \: \dfrac{1}{1 +  {x}^{2} }  \: )

 \dfrac{dy}{dx}  \:  =  -  \dfrac{1}{2(1 +  {x}^{2}) }

Answered by Anonymous
0

y=cot−1(x1+x2−1)</p><p>\begin{lgathered}let \: \: \: x \: = tan \alpha \\ = &gt; \alpha \: = {tan}^{ - 1} x\end{lgathered}letx=tanα=&gt;α=tan−1x

= &gt; y = {cot}^{ - 1}( \dfrac{ \sqrt{1 + {tan}^{2} \alpha } - 1 }]{tan\alpha } )=&gt;y=cot−1(tanα1+tan2α−1)</p><p>= {cot}^{ - 1} ( \dfrac{ \sqrt{sec ^{2} \alpha } - 1}{tan \alpha } )=cot−1(tanαsec2α−1)

= {cot}^{ - 1} ( \dfrac{sec \alpha - 1}{tan \alpha } )=cot−1(tanαsecα−1)

= {cot}^{ - 1} ( \: \dfrac{ \dfrac{1}{cos \alpha } - 1 }{ \dfrac{sin \alpha }{cos \alpha } } \: )=cot−1(cosαsinαcosα1−1)

= {cot}^{ - 1} ( \: \dfrac{ \dfrac{1 - cos \alpha }{cos \alpha } }{ \dfrac{sin \alpha }{cos \alpha } } \: )=cot−1(cosαsinαcosα1−cosα)

= {cot}^{ - 1} ( \dfrac{1 - cos \alpha }{sin \alpha } \: )=cot−1(sinα1−cosα)

= {cot}^{ - 1} ( \: \dfrac{1 - cos \alpha }{sin \alpha } \: )=cot−1(sinα1−cosα)

= {cot}^{1} ( \: \dfrac{2 {sin}^{2} \dfrac{ \alpha }{2} }{2sin \dfrac{ \alpha }{2}cos \dfrac{ \alpha }{2} } \: )=cot1(2sin2αcos2α2sin22α)

= {cot}^{ - 1} ( \: tan \dfrac{ \alpha }{2} \: )=cot−1(tan2α)

= {cot}^{ - 1} ( \: cot \: ( \dfrac{\pi}{2} \: - \dfrac{ \alpha }{2} \: ) \: )=cot−1(cot(2π−2α))

= \dfrac{\pi}{2} \: - \dfrac{ \alpha }{2}=2π−2α

y= \dfrac{\pi}{2} - \dfrac{1}{2} \: {tan}^{ - 1} xy=2π−21tan−1x

differentiating \: with \: respect \: to \: x \:differentiatingwithrespecttox

\dfrac{dy}{dx} = \dfrac{d}{dx} ( \dfrac{\pi}{2} ) \: - \dfrac{d}{dx} ( \dfrac{1}{2} {tan}^{ - 1} x \: )dxdy=dxd(2π)−dxd(21tan−1x)

\dfrac{dy}{dx} \: = 0 \: - \dfrac{1}{2} \: ( \: \dfrac{1}{1 + {x}^{2} } \: )dxdy=0−21(1+x21)

\dfrac{dy}{dx} \: = - \dfrac{1}{2(1 + {x}^{2}) }dx[/tex]

Similar questions