Math, asked by snithin9550, 3 months ago

find the derivative of e power 5x​

Answers

Answered by vikashpatnaik2009
0

Answer:

Let y=e  

x

sin5x

⇒  

dx

dy

​  

=  

dx

d

​  

(e  

x

sin5x)=sin5x.  

dx

d

​  

(e  

x

)+e  

x

 

dx

d

​  

(sin5x)  

=e  

x

(sin5x+5cos5x)

∴  

dx  

2

 

d  

2

y

​  

=  

dx

d

​  

[e  

x

(sin5x+5cos5x)]  

=(sin5x+5cos5x)  

dx

d

​  

(e  

x

)+e  

x

.  

dx

d

​  

(sin5x+5cos5x)

=(sin5x+5cos5x)e  

x

+e  

x

[cos5x  

dx

d

​  

(5x)+5(−sin5x).  

dx

d

​  

(5x)]  

=e  

x

(sin5x+5cos5x)+e  

x

(5cos5x−25sin5x)

=e  

x

(10cos5x−24sin5x)=2e  

x

(5cos5x−12sin5x)

Answered by sahil406124
0

the derivative of e power 5x is 5e^5x

Similar questions