find the derivative of e power 5x
Answers
Answered by
0
Answer:
Let y=e
x
sin5x
⇒
dx
dy
=
dx
d
(e
x
sin5x)=sin5x.
dx
d
(e
x
)+e
x
dx
d
(sin5x)
=e
x
(sin5x+5cos5x)
∴
dx
2
d
2
y
=
dx
d
[e
x
(sin5x+5cos5x)]
=(sin5x+5cos5x)
dx
d
(e
x
)+e
x
.
dx
d
(sin5x+5cos5x)
=(sin5x+5cos5x)e
x
+e
x
[cos5x
dx
d
(5x)+5(−sin5x).
dx
d
(5x)]
=e
x
(sin5x+5cos5x)+e
x
(5cos5x−25sin5x)
=e
x
(10cos5x−24sin5x)=2e
x
(5cos5x−12sin5x)
Answered by
0
the derivative of e power 5x is 5e^5x
Similar questions