Find the derivative of f(x) = 8 divided by x at x = -1.
Answers
To find :
• Derivative of f(x)=8/x at x= -1
Solution:
Differentiate w.r.t x , we get :
•At x=-1
Formula :
Step-by-step explanation:
To find :
• Derivative of f(x)=8/x at x= -1
Solution:
f(x) = y = \frac{8}{x}f(x)=y=
x
8
Differentiate w.r.t x , we get :
\begin{gathered}\implies \: \frac{dy}{dx} = \frac{d}{dx} \frac{8}{x} \\ \\ \implies \: \frac{dy}{dx} = 8 \: \frac{d}{dx} \frac{1}{x} \\ \\ \implies \: \frac{dy}{dx} = 8 \frac{d}{dx} {x}^{ - 1} \\ \\ \implies \: \frac{dy}{dx} = 8( - 1) {x}^{ - 1 - 1} \\ \\ \implies \: \frac{dy}{dx} = \frac{ - 8}{ {x}^{2} }\end{gathered}
⟹
dx
dy
=
dx
d
x
8
⟹
dx
dy
=8
dx
d
x
1
⟹
dx
dy
=8
dx
d
x
−1
⟹
dx
dy
=8(−1)x
−1−1
⟹
dx
dy
=
x
2
−8
•At x=-1
\begin{gathered}\leadsto \: \frac{dy}{dx} = \frac{ - 8}{ { - 1}^{2} } \\ \\ \leadsto \: \frac{dy}{dx} = - 8\end{gathered}
⇝
dx
dy
=
−1
2
−8
⇝
dx
dy
=−8
Formula :
\star \boxed{ \red{\frac{d}{dx} {x}^{n} = n {x}^{n - 1} }}⋆
dx
d
x
n
=nx
n−1