find the derivative of f(x)=cosx/1+sinx w.r.t 'x'
Answers
Answered by
21
Hey
Hope it helps ^_^
Hope it helps ^_^
Attachments:
Answered by
5
Step-by-step explanation:
given
f(x)=cosx/1+sinx
we know that
d/dx (a/b)=b× d/dx(b)-a×d/dx(b)/b^2
so,
{cosX/1+sinX=1+sinX. d/dx(cosX)- cosx. d/dx(1+sinX)}/(1+sinX)^2
d/dX(cosx)= -sinX
d/dx(1+sinX)=cosX
By solving
1+sinX (-sinX)-cosX(cosX)/(1+sinX)^2
= -sinX-sin^2X-cos^2X/(1+sinx)^2
-sinX-(sin^2X+cos^2X)/(1+sinX)^2
(-sinX-1)/(1+sinx) (1+sinX)
-1(1+sinX)/(1+sinX) (1+sinX)
= -1/(1+sinX)
Similar questions