Math, asked by mugheesshoukat519, 3 months ago

Find the derivative of f(x)=cotx ln secx

Answers

Answered by suhail2070
5

Step-by-step explanation:

f(x) =  \cot(x) ln( \sec(x)  \\  \\  {f(x)}^{1}  =  \frac{ \cot(x) }{ \sec(x) }  \sec(x)  \tan(x)   -  { \csc(x) }^{2} ln( \sec(x))  \\  \\  = 1 -  { \csc(x) }^{2} ln( \sec(x) )

Answered by assingh
23

Topic :-

Differentiation

To Differentiate :-

f(x)=\cot x \cdot \ln \sec x

Solution :-

f(x)=\cot x \cdot \ln \sec x

\dfrac{d(f(x))}{dx}=\dfrac{d(\cot x \cdot \ln \sec x)}{dx}

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot\dfrac{d(\cot x )}{dx}+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

\left(\because \dfrac{d(fg)}{dx}=g\cdot \dfrac{d(f)}{dx}+f\cdot\dfrac{d(g)}{dx} \right)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot(-\csc^2x)+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

\left(\because \dfrac{d(\cot x)}{dx}=-\csc^2x \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot\dfrac{d(\sec x )}{dx}

\left(\because \dfrac{d(\ln t)}{dx}=\dfrac{1}{t}\cdot\dfrac{dt}{dx} \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot \sec x\cdot \tan x

\left(\because \dfrac{d(\sec x)}{dx}=\sec x\cdot \tan x \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+(\cot x\cdot\tan x)\cdot\left (\dfrac{1}{\cancel{\sec x}}\cdot \cancel{\sec x}\right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+1

(\because \cot x \cdot \tan x = 1)

Answer :-

\underline{\boxed{\dfrac{d(f(x))}{dx}=1-\csc^2x \cdot\ln \sec x}}

Note : csc x = cosec x

Similar questions