Math, asked by brainlymaster39, 3 months ago

find the derivative of f(x)=sinx/x​

Answers

Answered by anmol4953
49

Answer:

f(x)=sinx/x

f'(x)= x (sin'x) - sinx(x')/x²

=> xcosx-sinx/x²

hope it helps

Answered by Anonymous
26

Explanation,

ㅤㅤㅤㅤㅤ

\bigstar \rm \: f(x) =  \dfrac{sin \: (x)}{x}  \\  \\  \\  \rm \leadsto \:f'(x) =  \dfrac{d}{dx} (  \dfrac{sin \: (x)}{x} ) \\  \\  \\  \rm\underline{ \red{Using \:  differentiation  \: rule, }}\\  \\  \\   \rm \leadsto \:f'(x) =  \dfrac{ \dfrac{d}{dx} (sin \: (x)) \times x - sin \: (x) \times  \dfrac{d}{dx} (x)}{x {}^{2} }  \\  \\  \\ \rm \leadsto \:f'(x) =   \dfrac{cos \: (x)\times x - sin \:( x) \times  \dfrac{d}{dx} (x)}{x {}^{2} }  \\  \\  \\ \rm \leadsto \:f'(x) =   \dfrac{cos \: (x )\times x - sin \:( x )\times  1}{x {}^{2} } \\  \\  \\ \leadsto \underline{ \boxed{\rm \:f'(x) =   \dfrac{cos \:( x) \times x - sin \:( x )}{x {}^{2} }}} \:  \bigstar

ㅤㅤㅤㅤㅤ

Know to more,

ㅤㅤㅤㅤㅤ

 \bull \rm \: Power  \: Rule: ( \dfrac{d}{dx}) (x {}^{n}  ) = nx {}^{n - 1} \\  \\  \\   \bull\rm \: Derivative  \: of  \: a  \: constant, \:  a:   \: ( \dfrac{d}{dx}) (a) = 0 \\  \\  \\   \bull\rm \: Derivative  \: of \:  a \:  constant  \: multiplied \:  with \:  function  \: f: ( \dfrac{d}{dx}) (a. f) = af'  \\  \\  \\  \\ \bull \rm Sum  \: Rule: ( \dfrac{d}{dx}) (f  \pm g) = f' \pm \: g' \\  \\  \\  \bull\rm Product  \: Rule: ( \dfrac{d}{dx}) (fg)= fg' + gf' \\  \\  \\   \bull\rm \: Quotient  \: Rule: \dfrac{d}{dx}( \dfrac{f}{g}) = \dfrac{gf'- fg'}{g {}^{2} }

ㅤㅤㅤㅤㅤ

Similar questions