Math, asked by radhakrishna051970, 4 months ago

find the derivative of function 1÷ax^2+bx+c​

Answers

Answered by mathdude500
6

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \boxed{ \purple{ \rm \: \dfrac{d}{dx}  {x}^{n}  =  {nx}^{n - 1} }}

\large\underline\purple{\bold{Solution :-  }}

 : \implies \tt \: Let \: y \:  = \dfrac{1}{ {ax}^{2}  + bx + c}

 : \implies \tt \: y \:  =  \:  {( {ax}^{2} + bx + c) }^{ - 1}

★ On differentiating both sides w r. t. x, we get

 : \implies \tt \: \dfrac{dy}{dx}  = \dfrac{d}{dx}  {( {ax}^{2} + bx + c) }^{ - 1}

  \therefore \tt \: \dfrac{dy}{dx}  =  - \:  {( {ax}^{2} + bx + c) }^{ - 2} \dfrac{d}{dx} ( {ax}^{2}  + bx + c)

\therefore \tt \: \dfrac{dy}{dx}  =  - \:  {( {ax}^{2} + bx + c) }^{ - 2}(2ax + b)

 : \implies \tt \: \dfrac{dy}{dx}  = \dfrac{ - (2ax + b)}{ {( {ax}^{2}  + bx + c)}^{2} }

Similar questions