Math, asked by kspatwal, 4 months ago

Find the derivative of function (attachment)​

Attachments:

Answers

Answered by Anonymous
17

Given function :-

\tt\longmapsto{\dfrac{sin(x + a)}{cosx}}

To find :-

  • Derivative of the given function.

Solution :-

We have a given function, finding the derivative of the given function.

We can write it as

\: \: \: \: \: \: \: \: \bigstar\bf\: \: \: {\dfrac{d}{dx}\: \dfrac{sin (x + a)}{cosx}}

\rm\implies{\dfrac{cosx\: \dfrac{d}{dx}sin(x + a) - sin(x + a) \dfrac{d}{dx}\: cosx}{(cosx)^2}}

\rm\implies{\dfrac{cosx . cos(x + a) + sin(x + a)\: sinx}{cos^2x}}

\rm\implies{\dfrac{cos[x + a - x]}{cos^2x}}

\rm\implies{\dfrac{cos\: a}{cos^2 x}}

\rm\implies{cos\: a \times \dfrac{1}{cos^2}}

\bf\implies{cos\: a . sec^2x}

Hence, the derivative of the given function is cos a . sec²x.

Similar questions