Math, asked by nainak, 8 months ago

find the derivative of given function w.r.t independent variable 't' :
f(t)= t²-1/ t²+t-2​

Answers

Answered by Anonymous
217

\dag\:\underline{\sf AnsWer :}

:\implies\sf f(t) = \dfrac{t^2 - 1}{t^2 + t - 2}

:\implies\sf f(t) = \dfrac{(t - 1)(t + 1)}{t^2 + 2t  - t - 2} \\

:\implies\sf f(t) = \dfrac{(t - 1)(t + 1)}{t(t + 2)  -1( t  +  2)} \\

:\implies\sf f(t) = \dfrac{(t - 1)(t + 1)}{(t - 1)( t  +  2)} \\

:\implies\sf f(t) = \dfrac{ \cancel{(t - 1)}(t + 1)}{ \cancel{(t - 1)}( t  +  2)} \\

:\implies\sf f(t) = \dfrac{(t + 1)}{ (t  +  2)} \\

\bigstar\:\underline{\textbf{ By using division rule : }}

:\implies\sf  \dfrac{d}{dt} \dfrac{(t + 1)}{ (t  +  2)} \\

:\implies\sf \dfrac{(t + 2) \dfrac{d}{dt}(t + 1) -  (t + 1)\dfrac{d}{dt}(t + 2)}{ (t  +  2) ^{2} } \\

:\implies\sf  \dfrac{(t + 2)(1) -  (t + 1)(1)}{ (t  +  2) ^{2} } \\

:\implies\sf   \dfrac{t + 2-  t  -  1}{ (t  +  2) ^{2} } \\

:\implies\sf   \dfrac{ 2 -  1}{ (t  +  2) ^{2} } \\

:\implies \underline{ \boxed{\frak{ \dfrac{1}{ (t  +  2) ^{2} }}}} \\

Answered by diajain01
58

{\boxed{\underline{ \orange{\tt{Required \:  \:  answer:-}}}}}

{ \boxed{ \underline{ \huge { \sf{ \bf{\frac{1}{ {(t +2)}^{2} } }}}}}}

★USING:-

  • Factorisation

★SOLUTION:-

  : \implies \sf \large{ \frac{d}{dx} ( \frac{ {t}^{2} - 1 }{ {t}^{2}  + t - 2} )}

  : \implies \sf \large{ \frac{d}{dx} ( \frac{(t + 1)(t - 1)}{t(t + 2) - 1(t + 2)} )}

  : \implies \sf \large{ \frac{d}{dx} ( \frac{(t + 1) \cancel{(t - 1)}}{ \cancel{(t - 1)}(t + 2)} ) }

  : \implies \sf \large{ \frac{d}{dx}( \frac{t + 1}{t + 2}  )}

 :  \implies \sf \large{ \frac{(t + 2) \frac{d}{dx}(t + 1) - (t + 1) \frac{d}{dx} (t + 2) }{ {(t + 2)}^{2} } }

 :  \implies \sf \large{ \frac{(t + 2) \times 1 - (t + 1) \times 1}{ {(t + 2)}^{2} } }

 :  \implies \sf \large{ \frac{t + 2 - t - 1}{ {(t + 2)}^{2} } }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {  \boxed{ \underline{ \purple{ \large{ \sf{ \bf{ \frac{1}{ {(t + 2)}^{2} }}}}}}}}

Similar questions