Math, asked by harshitha17290, 9 months ago

find the derivative of log(tan5x​

Answers

Answered by ankajvaish2016
0

Answer:

5555655555555566655556566x

Step-by-step explanation:

zip cup

Answered by Anonymous
6

Here , y=log(tan5x)

Differential \: with \: respect \: to \: x

\frac{dy}{dx}=\frac{d}{dx}log(tan5x)

\frac{dy}{dx}=\frac{1}{tan5x}*\frac{d}{dx}(tan5x)

\frac{dy}{dx}=\frac{1}{tan5x}*Sec²5x*\frac{d}{dx}(5x)

\frac{dy}{dx}=\frac{Sec²5x}{tan5x}*5

\frac{dy}{dx}=\frac{5Sec²5x}{tan5x}

\frac{dy}{dx}=5(Sec²5x*Cot5x)

\frac{dy}{dx}=5(\frac{1}{Cos²5x}*\frac{Cos5x}{Sin5x})

\frac{dy}{dx}=5(\frac{1}{Cos5x*Sin5x})

\frac{dy}{dx}=5(\frac{2}{2Sin5x*Cos5x})

\frac{dy}{dx}=5(\frac{2}{Sin10x})

\frac{dy}{dx}=\frac{10}{Sin10x}

\frac{dy}{dx}=10Cosec10x

Similar questions