Math, asked by msai45574, 6 months ago

find the derivative of log (x2+x+2/x2-x+2) w.r to x​

Answers

Answered by mahendra90637
4

Step-by-step explanation:

ANSWER -2x+4/x^4+3x^2+4 (or) 4-2x/x^4+3x^2+4

Attachments:
Answered by fariyalatufa001
1

Answer:

\frac{-2x^{2}+2}{(x^{2}+x+1)(x^{2}-x+1)}

Explanation:

Given: \log_{e}(\frac{x^{2}+x+1}{x^{2}-x+1})

Find: \frac{d}{dx}\log_{e}(\frac{x^{2}+x+1}{x^{2}-x+1})

Differentiation can be defined as a derivative of a function with respect to an independent variable.

Solution:

consider \frac{d}{dx}\log_{e}(\frac{x^{2}+x+1}{x^{2}-x+1})

Since, \log_{e}(\frac{x^{2}+x+1}{x^{2}-x+1})=\ln (\frac{x^{2}+x+1}{x^{2}-x+1})

\frac{d}{dx}\log_{e}(\frac{x^{2}+x+1}{x^{2}-x+1})=\frac{d}{dx}\ln (\frac{x^{2}+x+1}{x^{2}-x+1})

Apply Chain rule:

\frac{d}{dx}\log_{e}(\frac{x^{2}+x+1}{x^{2}-x+1})=\frac{1}{\frac{x^{2}+x+1}{x^{2}-x+1}}\frac{d}{dx}\ln (\frac{x^{2}+x+1}{x^{2}-x+1})

Since,\frac{d}{dx}(\frac{x^{2}+x+1}{x^{2}-x+1})=\frac{-2x^{2}+2}{(x^{2}-x+1)^{2}}

\frac{d}{dx}\log_{e}(\frac{x^{2}+x+1}{x^{2}-x+1})=\frac{1}{\frac{x^{2}+x+1}{x^{2}-x+1}}\cdot \frac{-2x^{2}+2}{(x^{2}-x+1)^{2}}

Hence, \frac{d}{dx}\log_{e}(\frac{x^{2}+x+1}{x^{2}-x+1})=\frac{-2x^{2}+2}{(x^{2}+x+1)(x^{2}-x+1)}

#SPJ3

Similar questions