Math, asked by Anonymous, 1 month ago

Find the derivative of modulus function,
 f(x) = |x|

Answer is given as x/|x|, I need explanation.​

Answers

Answered by MrImpeccable
34

ANSWER:

To Differentiate:

  • f(x) = |x|

Solution:

We are given that,

\implies f(x) =|x|

We know that,

\implies |x|=\sqrt{x^2}

So,

\implies f(x)=\sqrt{x^2}

We can re-write it as,

\implies f(x)=(x^2)^{\frac{1}{2}}

Differentiating both sides w.r.t. x,

\implies\dfrac{d}{dx}f(x)=\dfrac{d}{dx}(x^2)^{\frac{1}{2}}

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}(x^2)^{\frac{1}{2}}

We know that,

\hookrightarrow\dfrac{d}{dx}x^n=nx^{n-1}

So,

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}(x^2)^{\frac{1}{2}}

\implies\dfrac{dy}{dx}=\dfrac{1}{2}(x^2)^{\frac{1}{2}-1}\times\dfrac{d}{dx}(x^2)

\implies\dfrac{dy}{dx}=\dfrac{1}{2}(x^2)^{\frac{-1}{2}}\times2(x)^{2-1}

\implies\dfrac{dy}{dx}=\dfrac{1}{2}\cdot\dfrac{1}{(x^2)^{\frac{1}{2}}}\times2x

\implies\dfrac{dy}{dx}=\dfrac{1}{2\!\!\!/}\cdot\dfrac{1}{\sqrt{(x^2)}}\times2\!\!\!/\:x

\implies\dfrac{dy}{dx}=\dfrac{x}{\sqrt{(x^2)}}

As,

\implies |x|=\sqrt{x^2}

So,

\implies\dfrac{dy}{dx}=\dfrac{x}{\sqrt{x^2}}

\implies\dfrac{dy}{dx}=\dfrac{x}{|x|}

Hence,

\implies\dfrac{d}{dx}f(x)=\dfrac{x}{|x|}

Therefore,

\bf\implies\dfrac{d}{dx}|x|=\dfrac{x}{|x|}

Similar questions