Math, asked by rampritam06, 2 days ago

find the derivative of sin^(-1)+(x^2-1/x^2+1)​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {sin}^{ - 1}\bigg[\dfrac{ {x}^{2}  - 1}{ {x}^{2} + 1 } \bigg]

Let assume that,

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg[\dfrac{ {x}^{2}  - 1}{ {x}^{2} + 1 } \bigg]

We know,

\boxed{ \tt{ \:  {sin}^{ - 1}x +  {cos}^{ - 1}x =  \dfrac{\pi}{2} \: }}

So, using this identity, we get

\rm :\longmapsto\:y =\dfrac{\pi}{2} -   {cos}^{ - 1}\bigg[\dfrac{ {x}^{2}  - 1}{ {x}^{2} + 1 } \bigg]

can be further rewritten as

\rm :\longmapsto\:y =\dfrac{\pi}{2} -   {cos}^{ - 1}\bigg[\dfrac{ - (1 - {x}^{2})}{ {x}^{2} + 1 } \bigg]

We know that,

\boxed{ \tt{ \:  {cos}^{ - 1}( - x) = \pi \:  -  \:  {cos}^{ - 1}x \: }}

So, using this identity, we get

\rm :\longmapsto\:y = \dfrac{\pi}{2} - \pi +  {cos}^{ - 1}\bigg[\dfrac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg]

\rm :\longmapsto\:y  \: = -  \:  \dfrac{\pi}{2} +  {cos}^{ - 1}\bigg[\dfrac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg]

\rm :\longmapsto\:y  \: = -  \:  \dfrac{\pi}{2} +  2 {tan}^{ - 1}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y  \: =\dfrac{d}{dx}\bigg[ -  \:  \dfrac{\pi}{2} +  2 {tan}^{ - 1}x\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} =  - \dfrac{d}{dx}\dfrac{\pi}{2} + \dfrac{d}{dx}(2 {tan}^{ - 1}x)\:

\rm :\longmapsto\:\dfrac{dy}{dx} =  - 0 + 2 \times \dfrac{1}{1 +  {x}^{2} }

\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx} =  \frac{2}{1 +  {x}^{2} } \: }}

Explore more :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions