Math, asked by vedantagarwal368, 5 months ago

find the derivative of sin^n x​

Answers

Answered by Anonymous
23

Question :

Find the Derivatives of the \sf\sin^{n}x

Formula's Used :

Genral Formula

1)\sf\:\frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

2)\sf\:\frac{d(constant)}{dx}  = 0

3)\sf\dfrac{d(\sin\:x)}{dx}=\cos\:x

\sf4)\dfrac{d(\cos\:x)}{dx}=-\sin\:x

Chain rule

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\:\dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Solution :

We have to find the derivative of\sf\sin^{n}x

\sf\:y=\sin^{n}x

Let \sf\sin\:x=t,Then

\sf\:y=(t)^n

Now Differentiate it with respect to x, by chain rule

\sf\implies\dfrac{dy}{dx}=\dfrac{d(t^n)}{dt}\times\dfrac{dt}{dx}

\sf\implies\dfrac{dy}{dx}=\dfrac{d(\sin\:x)^n}{d(\sin\:x)}\times\dfrac{d(\sin\:x)}{dx}

\sf\implies\dfrac{dy}{dx}=n\sin^{n-1}x\:\times\cos\:x

It is the required solution

_______________

More Information :

Quotient rule

Let u = f(x) and v = g(x)

Then ,

\sf\dfrac{d}{dx}(\dfrac{u}{v})=\dfrac{v\times\frac{du}{dx}-u\times\frac{dv}{dx}}{(v)^2}

Product Rule

Let u = f(x) and v = g(x) , then

\sf\dfrac{d(uv)}{dx}=u\times\dfrac{dv}{dx}+v\times\dfrac{du}{dx}

Answered by Anonymous
19

Question :

Find the Derivatives of the \sf\sin^{n}x

Formula's Used :

• Genral Formula

1)\sf\:\frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

2)\sf\:\frac{d(constant)}{dx}  = 0

3)\sf\dfrac{d(\sin\:x)}{dx}=\cos\:x

\sf4)\dfrac{d(\cos\:x)}{dx}=-\sin\:x

• Chain rule

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\:\dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Solution :

We have to find the derivative of\sf\sin^{n}x

\sf\:y=\sin^{n}x

Let \sf\sin\:x=t,Then

\sf\:y=(t)^n

Now Differentiate it with respect to x, by chain rule

\sf\implies\dfrac{dy}{dx}=\dfrac{d(t^n)}{dt}\times\dfrac{dt}{dx}

\sf\implies\dfrac{dy}{dx}=\dfrac{d(\sin\:x)^n}{d(\sin\:x)}\times\dfrac{d(\sin\:x)}{dx}

\sf\implies\dfrac{dy}{dx}=n\sin^{n-1}x\:\times\cos\:x

It is the required solution

_______________

More Information :

• Quotient rule

Let u = f(x) and v = g(x)

Then ,

\sf\dfrac{d}{dx}(\dfrac{u}{v})=\dfrac{v\times\frac{du}{dx}-u\times\frac{dv}{dx}}{(v)^2}

• Product Rule

Let u = f(x) and v = g(x) , then

\sf\dfrac{d(uv)}{dx}=u\times\dfrac{dv}{dx}+v\times\dfrac{du}{dx}

\huge\colorbox{lime}{sᴀᴋsʜɪ࿐ ❤}

Similar questions