Math, asked by maheen8, 6 months ago

find the derivative of sin square x + e square into x square /logx​

Answers

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question : Find the derivative of sin²x+e²x²/logx

\huge\mathfrak{\underline{\underline{\red{Answer:-}}}}

 \:  \:  \implies \displaystyle \bf{f(x) =  \frac{ {sinx}^{2}  +  {e}^{2}  \times  {x}^{2} }{logx} }

 \:  \:  \bullet \boxed { \sf{ \: by \: using \: quotient \: rule}}

 \:   \\ \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{logx \frac{dy}{dx}(sin {x}^{2}  +  {e}^{2} {x}^{2}  ) - ( \frac{dy}{dx} logx)( {sinx}^{2}   +  {e}^{2}  {x}^{2}  )}{ ({logx})^{2} } }

  \\ \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{logx( \frac{dy}{dx} {sinx}^{2}  +  \frac{dy}{dx} {e}^{2}  {x}^{2})   - ( \frac{dy}{dx} logx)( {sinx}^{2}   +  {e}^{2} {x}^{2})  }{ {logx}^{2} } }

 \bullet \underline{ \boxed{ \bf{additional \: information}}}

 \:  \star \bf{ \frac{dy}{dx}  {sinx}^{2}  = 2sinx\times cosx.....(by \: chain \: rule})

 \:  \star \bf{ \frac{dy}{dx}  {e}^{2}  {x}^{2}  =  {e}^{2} 2x + 2 {e}^{2}  {x}^{2} }........(by \: chain \: rule)

 \:  \star \bf{ \frac{dy}{dx}logx  =  \frac{1}{x} }

Apply the formulas in this equation :

 \: \\   \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{logx(2sinxcosx +  {e}^{2}2x + 2e {x}^{2}) -  \frac{1}{x}( {sinx}^{2}   +  {e}^{2}   {x}^{2} ) }{ {logx}^{2} } }

  \\ \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{logx   \times 2sinxcosx + logx \:  \times  {e}^{2}  {x}^{2}  -  \frac{1}{x} ( {sin}^{2}x  +  {e}^{2}  {x}^{2}) }{ {logx}^{2} } }

 \:  \\  \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{(2sinxcosxlogx  + logx {e}^{2}  {x}^{2} -  \frac{1}{x} {sin}^{2}x -  \frac{1}{e}   {e}^{2}  x) }{ {log}^{2}x } }

 \:  \\  \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{(2sinxcosxlogx + logx {e}^{2} {x}^{2}  - \frac{1}{x}  {sin}^{2}x -  {e}^{2} x)  }{ {log}^{2}x } }

 \:  \\  \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{(2sinxcosxlogx - \frac{1}{x}  {sin}^{2}x + logx {e}^{2}  {x}^{2}  -  {e}^{2}x }{ {log}^{2}x } }

  \\ \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{sinx(2cosxlogx -  \frac{sinx}{x} )  +  {e}^{2} x(logxx - 1) }{ {log}^{2}x } }

 \:   \\ \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{sinx( \frac{2cosxlogx x - sinx}{x})  + {e}^{2}x( logxx - 1) }{ {log}^{2}x } }

 \: \\   \longrightarrow \displaystyle \sf{ \frac{dy}{dx}  =  \frac{sin(2cosxlogxx - sinx) +  {e}^{2} x(logxx - 1)}{x {log}^{2}x} }

\: \\ \bullet \boxed{\displaystyle\sf{\dfrac{dy}{dx}=\frac{sin(2cosxlogxx-sinx) +{e}^{2} x(logxx-1)}{x{log}^{2} x} }}

Similar questions