Math, asked by krishna2025, 3 months ago

Find the derivative of sin x cos x​

Answers

Answered by rosemaryrusso2005
1

Answer:

(x)=cosx(cosx)+sinx(−sinx)

f

(x)=cos

2

x−sin

2

x

Use the identity cos2x=cos

2

x−sin

2

x

f

(x)=cos2x

Step-by-step explanation:

Explanation: The product rule can be used to differentiate any function of the form f(x)=g(x)h(x) . It states that f'(x)=g'(x)h(x)+g(x)h'(x) . The derivative of sinx is cosx and the derivative of cosx is −sinx .

Answered by shashankhc58
17

]\huge{\textbf{\textsf{{\color{navy}{An}}{\purple{sw}}{\pink{er}}{\color{pink}{:}}}}}

let \: y = f (x)  =  sinx \\ ⇉f(x + h) =  \sin(x + h)

  ʙʏ  \: ᴅᴇғɪɴɪᴛɪᴏɴ \\ ⇒ \frac{dy}{dx}  =  \binom{lim}{x→0}  \frac{f(x + h) - f(x)}{h}  \\  \\   =  \frac{ \sin(x + h)  -  sinx }{h}  \\  =  \frac{2 \cos( \frac{x + h + x}{2} )  . \sin( \frac{x + h - x}{2} ) }{2 \times  \frac{h}{2} }  \\  =  \frac{ \cos( \frac{2x + h}{2} ) . \sin( \frac{h}{2} ) }{ \frac{h}{2} }  \\  =  \binom{lim}{x→0} \cos( \frac{2x + h}{2} ).1 \\   \frac{dy}{dx} sinx  =  cosx

ɢᴜʀᴜ ᴇᴀᴛ 5 sᴛᴀʀ ᴅᴏ ɴᴏᴛʜɪɴɢ

Similar questions