Math, asked by afsal123412, 2 days ago

find the derivative of( sin x) using first principle

Answers

Answered by meghalshukla
1

Answer:

First principle of differentiation :

dx

dy

=lim

δx→0

δx

f(x+δx)−f(x)

Here f(x)=sinx

⇒f(x+δx)=sin(x+δx)

⇒f(x+δx)−f(x)=sin(x+δx)−sinx

We know that sinC−sinD=2cos(

2

C+D

)sin(

2

C−D

)

⇒f(x+δx)−f(x)=2cos(

2

x+δx+x

)sin(

2

δx

)

dx

dy

=lim

δx→0

δx

2cos(x+

2

δx

)sin(

2

δx

)

dx

dy

=lim

δx→0

cos(x+

2

δx

)

2

δx

sin(

2

δx

)

dx

d(sinx)

=cosx as lim

x→0

x

sinx

=1

Similar questions