Math, asked by roshansharma44, 4 months ago

find the derivative of sin⁵(ax-c)​

Answers

Answered by Asterinn
9

We have to find out the derivative of sin⁵(ax-c).

We will differentiate by using Chain rule.

 \rm \longrightarrow  \:  \dfrac{d  \bigg({sin}^{5} (ax - c) \bigg)}{dx}  \\  \\  \\ \rm \longrightarrow  5 \: {sin}^{4} (ax - c)\:   \times \dfrac{d  \bigg({sin} (ax - c) \bigg)}{dx} \\  \\  \\ \rm \longrightarrow  5 \: {sin}^{4} (ax - c)\:   \times \: cos (ax - c) \times \dfrac{d  (ax - c) }{dx} \\  \\  \\ \rm \longrightarrow  5 \: {sin}^{4} (ax - c)\:   \times \: cos (ax - c) \times  \bigg(\dfrac{d  (ax )  }{dx}   - \dfrac{d  (c )   }{dx}\bigg)\\  \\  \\ \rm \longrightarrow  5 \: {sin}^{4} (ax - c)\:   \times \: cos (ax - c) \times  \bigg(\dfrac{a \: d  (x )  }{dx}   - 0\bigg)\\  \\  \\ \rm \longrightarrow  5 \: {sin}^{4} (ax - c)\:   \times \: cos (ax - c) \times a \\  \\  \\ \rm \longrightarrow  5 a\: \:  {sin}^{4} (ax - c)\:  \: cos (ax - c)

Additional Information :

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x


Anonymous: Nice as always (:
Anonymous: Awesome____________________██████
_________▓▓▓▓____█████████
__▓▓▓▓▓=▓____▓=▓▓▓▓▓
__ ▓▓▓_▓▓▓▓░●____●░░▓▓▓▓
_▓▓▓▓_▓▓▓▓▓░░__░░░░▓▓▓▓
_ ▓▓▓▓_▓▓▓▓░░♥__♥░░░▓▓▓
__ ▓▓▓___▓▓░░_____░░░▓▓
▓▓▓▓▓____▓░░_____░░▓
_ ▓▓____ ▒▓▒▓▒___ ████
_______ ▒▓▒▓▒▓▒_ ██████
_______▒▓▒▓▒▓▒ ████████
_____ ▒▓▒▓▒▓▒_██████ ███
_ ___▒▓▒▓▒▓▒__██████ _███
_▓▓X▓▓▓▓▓▓▓__██████_ ███
▓▓_██████▓▓__██████_ ███
▓_███████▓▓__██████_ ███
_████████▓▓__██████ _███
_████████▓▓__▓▓▓▓▓▓_▒▒
_████████▓▓__▓▓▓▓▓▓
_████████▓▓__▓▓▓▓▓
roshansharma44: thank u
Similar questions