Find the derivative of sin5x.cos7x
Answers
Answered by
0
Answer:
Step-by-step explanation:
let
y=sin5x.cos7x
differenciating on both side with respect to x
dy/dx=d(sin7x.cos7x)/dx
=[{cos7x*d(sin7x)/dx}+{sin7x*dcos7x/dx|}]
=cos7x*(dsin7x/d7x)*d7x/dx+sin7x*(dcos7x/d7x)*d7x/dx
=cos7x*cos7x*7+sin7x*(-sin7x)*7
=7[(cosx)^2-(sinx)^2]
=7(cos14x)
∴d(sin5x.cos7x)/dx=7cos14x
Similar questions