Find the derivative of sinx by first principle.
Answers
Answered by
15
First principle of differentiation :
dxdy =lim δx→0δxf(x+δx)−f(x
Here f(x)=sinx
⇒f(x+δx)=sin(x+δx)
⇒f(x+δx)−f(x)=sin(x+δx)−sinx
We know that sinC−sinD=2cos( 2C+D )sin( 2C−D )
⇒f(x+δx)−f(x)=2cos( 2x+δx+x )sin( 2δx )
⇒ dxdy =lim δx→0δx2cos(x+ 2δx )sin(2δx )
⇒ dxdy =lim δx→0cos(x+ 2δ ) 2δxsin( 2δx )
⇒dxd(sinx) =cosx as lim x→0xsinx=1
Similar questions
English,
2 months ago
Social Sciences,
2 months ago
Social Sciences,
2 months ago
English,
5 months ago
English,
11 months ago
Math,
11 months ago
Math,
11 months ago