Math, asked by Chahat100, 1 year ago

Find the derivative of sinx+cosx/sinx-cosx

Answers

Answered by pulakmath007
31

SOLUTION

TO DETERMINE

The derivative of

 \displaystyle \sf{ \frac{ \sin x +  \cos x}{ \sin x  -  \cos x} }

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{   \frac{d}{dx} \bigg(  \frac{u}{v} \bigg) =  \frac{  \displaystyle \sf{v \frac{du}{dx}   - u \frac{dv}{dx}} }{ {v}^{2} }  }

EVALUATION

 \displaystyle \sf{ \frac{d}{dx}  \bigg( \frac{ \sin x +  \cos x}{ \sin x  -  \cos x}  \bigg)}

 \displaystyle \sf{  =   \frac{(\sin x  -  \cos x) \frac{d}{dx} ( \sin x +  \cos x) -(\sin x   +   \cos x) \frac{d}{dx} ( \sin x   -   \cos x) }{{ (\sin x  -  \cos x)}^{2} }  }

 \displaystyle \sf{  =   \frac{(\sin x  -  \cos x)  ( \cos x  -  \sin x) -(\sin x   +   \cos x) ( \cos x    +   \sin x) }{{ (\sin x  -  \cos x)}^{2} }  }

 \displaystyle \sf{  =   \frac{ {  - ( \sin x  -  \cos x)}^{2}  - {( \cos x    +   \sin x)}^{2}  }{{ (\sin x  -  \cos x)}^{2} }  }

 \displaystyle \sf{  =   \frac{ -  \bigg[ {   ( \sin x  -  \cos x)}^{2}   +  {( \cos x    +   \sin x)}^{2} \bigg]  }{{ (\sin x  -  \cos x)}^{2} }  }

 \displaystyle \sf{  =   \frac{ - 2 {   ( {\sin}^{2} x   +  { \cos}^{2}  x)}   }{{ (\sin x  -  \cos x)}^{2} }  }

 \displaystyle \sf{  =   \frac{ - 2    }{{ (\sin x  -  \cos x)}^{2} }  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=4t/1+t^2, y=3(1-t^2) /(1+t^2), then show that dy/dx=-9x/4y

https://brainly.in/question/18233961

2. Find the nth derivative of sin 6x cos 4x.

https://brainly.in/question/29905039

Similar questions