Math, asked by jaggu505, 11 months ago

Find the derivative of tan⁻¹ x/√1-x² w.r.t. sin⁻¹ (2x√1-x²). 0 < x < 1/√2

Answers

Answered by rishu6845
7

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by sk940178
3

Answer:

\frac{1}{2}

Step-by-step explanation:

We have to find the value of \frac{d(tan^{-1}(\frac{x}{\sqrt{1-x^{2}}}))}{d(sin^{-1}(2x\sqrt{1-x^{2}}))} =D (say)

Now, let us assume that, x=sin\alpha.

Then, tan^{-1}[\frac{x}{\sqrt{1-x^{2} } } ] =tan^{-1}[\frac{sin\alpha }{cos\alpha } ] =tan^{-1}[tan\alpha ]=\alpha....... (1)

Again, sin^{-1}[2x\sqrt{1-x^{2} } ] = sin^{-1}[2sin\alpha.\sqrt{1-sin^{2}\alpha  } ]=sin^{-1}[sin2\alpha ]= 2\alpha............(2)

Hence, we can write, D=\frac{d(tan^{-1}(\frac{x}{\sqrt{1-x^{2}}}))}{d(sin^{-1}(2x\sqrt{1-x^{2}}))}

=\frac{d\alpha }{d(2\alpha )} {From equation (1) and (2)}

= \frac{1}{\frac{d(2\alpha )}{d\alpha } }

=\frac{1}{2} (Answer)

Similar questions