Math, asked by arpit7280, 11 months ago

find the derivative of √tan 3z (whole root over of tan3z)​

Answers

Answered by rahman786khalilu
6

derivation wrt z.........

Attachments:

arpit7280: thank you so much
Answered by shivanijain4931
0

Answer:

The derivative is \frac{3 Sec^{2}3z }{2 tan3z}

Explanation:

Given: \sqrt{tan3z}

Find: The derivative

Solution: according to the question.

y=\sqrt{tan3z}

\frac{dy}{d_2}=\frac {d}{d_2} \sqrt{tan3z}

                               \therefore \frac{d\sqrt{x} }{dx}=\frac{1}{2\sqrt{x}} }

=\frac{1}{2\sqrt{tan3z} } \times \frac {d}{dz}(tan32)

                               \because dtanx=sec^2x\\

= \frac{1}{2\sqrt{tan3z}}\times sec^232\times \frac {d}{d_2}(3z)

\frac {sec^232}{2\sqrt{tan3z} }\times \frac{3dz}{dz}

=\frac{3 sec^23z}{2tan3z}

Hence, the derivative is \frac{3}{2} \frac{sec^2 3z}{tan3z}

#SPJ2

Similar questions