find the derivative of tanx by 1st principal
aman1488:
thesmartlarner plz answer
Answers
Answered by
2
general, the derivative of any function say f(x)f(x) is given as
f′(x)=limh→0f(x+h)−f(x)hf′(x)=limh→0f(x+h)−f(x)h
∴ddx(tanx)=limh→0tan(x+h)−tan(x)h∴ddx(tanx)=limh→0tan(x+h)−tan(x)h
=limh→0sin(x+h)cos(x+h)−sinxcosxh=limh→0sin(x+h)cos(x+h)−sinxcosxh
=limh→0sin(x+h)cosx−cos(x+h)sinxhcosxcos(x+h)=limh→0sin(x+h)cosx−cos(x+h)sinxhcosxcos(x+h)
=limh→0sin(x+h−x)hcosxcos(x+h)=limh→0sin(x+h−x)hcosxcos(x+h)
=limh→0sinhhcosxcos(x+h)=limh→0sinhhcosxcos(x+h)
=limh→0sinhh⋅limh→01cosxcos(x+h)=limh→0sinhh⋅limh→01cosxcos(x+h)
=1⋅1cosx⋅cosx=1⋅1cosx⋅cosx
=1cos2x=1cos2x
=sec2x
f′(x)=limh→0f(x+h)−f(x)hf′(x)=limh→0f(x+h)−f(x)h
∴ddx(tanx)=limh→0tan(x+h)−tan(x)h∴ddx(tanx)=limh→0tan(x+h)−tan(x)h
=limh→0sin(x+h)cos(x+h)−sinxcosxh=limh→0sin(x+h)cos(x+h)−sinxcosxh
=limh→0sin(x+h)cosx−cos(x+h)sinxhcosxcos(x+h)=limh→0sin(x+h)cosx−cos(x+h)sinxhcosxcos(x+h)
=limh→0sin(x+h−x)hcosxcos(x+h)=limh→0sin(x+h−x)hcosxcos(x+h)
=limh→0sinhhcosxcos(x+h)=limh→0sinhhcosxcos(x+h)
=limh→0sinhh⋅limh→01cosxcos(x+h)=limh→0sinhh⋅limh→01cosxcos(x+h)
=1⋅1cosx⋅cosx=1⋅1cosx⋅cosx
=1cos2x=1cos2x
=sec2x
Similar questions