Math, asked by shirsty1694, 6 months ago

Find the derivative of
e ^{ log( {5}^{x}  \times  {6}^{x} )

Answers

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\oplus\displaystyle\bf{Find \: the \: derivative \: of \: e^(log5^x\times6^x)}

\\ \\ \\\leadsto\displaystyle\tt{f(x)=\: e^(log5^x\times6^x)}

\\ \\ \\ \bullet \displaystyle\bf{By\: getting \: log \: with \: base \:e}

\\ \\ \\ \mapsto\displaystyle\tt{log_e f(x)=log_e  e^(log5^x \times 6^x)}

\\ \\ \\ \mapsto\displaystyle\tt{log_e f(x)= log_e e^(logx^5+logx^6)}

\\ \\ \\ \mapsto\displaystyle\tt{log_e f(x)=(log_e e^logx^5+log_e e^logx^6)}

\\ \\ \\ \mapsto\displaystyle\tt{log_ef(x)=x^5+x^6}

\\ \implies\sf{\dfrac{1}{f(x) }f(x)=5x^4+6x^5}

f(x)`=y

\\ \implies\sf{y*=f(x)5x^4+6x^5}

\\\implies\sf{y*=e^(logx^5\times x^6)x^4(5+6x)}

Similar questions