Math, asked by Anonymous, 1 month ago

Find the derivative of the below function w.r.t. x

 \boxed{y =  {cos \: x}^{cosx^{cos \: x^{... \infty} } } }

Answers

Answered by Anonymous
23

Given function is,

  \small\rm \longrightarrow y  = {cos \: x}^{cosx^{cos \: x^{... \infty}}}  \dots \dots(1.)

  \small\rm \longrightarrow y  = {cos \: x}^{ \textbf{ \textsf{y}}} \: \:  \left \{  using \: equation \: 1\right \}

Taking ln ( log with natural base ) both sides,

  \small\rm \longrightarrow  \ln (y)  =  \ln({ cos \: x}^{y})

Apply property of log,

  •  \boxed{ \sf \log {x}^{y}  = y \log x}

  \small\rm \longrightarrow  \ln (y)  =  y\ln({ cos \: x})

Now differentiating both sides w.r.t. x, we get:

  \small\rm \longrightarrow  \dfrac{d}{dx} (\ln y)  = \dfrac{d}{dx}  (y\ln{ cos \: x})

Using differentiation formulas:-

  •   \boxed{\sf \dfrac{d}{dx} (\ln x) =  \dfrac{1}{x} }

  •  \boxed {\sf \dfrac{d}{dx}f(x).g(x) =f'(x).g(x) + f(x).g'(x) }

  •  \boxed {\sf \dfrac{d}{dx}(cos\,x=-sin\, x }

  \small\rm \longrightarrow   \dfrac{1}{y} .\dfrac{dy}{dx}  = \dfrac{dy}{dx}. \ln(cos \: x) +   y. \dfrac{d}{dx} (\ln{ cos \: x})

  \small\rm \longrightarrow   \dfrac{1}{y} .\dfrac{dy}{dx}  = \dfrac{dy}{dx}. \ln(cos \: x) +   y. \dfrac{1}{ cos \: x}( - sin \: x)

 \small\rm \longrightarrow   \dfrac{1}{y} .\dfrac{dy}{dx} - \dfrac{dy}{dx}. \ln(cos \: x)   =   y \times  \dfrac{ - sin \: x}{ cos \: x}

 \small\rm \longrightarrow   \dfrac{dy}{dx} \left( \dfrac{1}{y}  -  \ln cos \: x \right) =    - y \:tan \: x

 \small\rm \longrightarrow   \dfrac{dy}{dx} =   \dfrac{  - y \:tan \: x}{ \left( \frac{1}{y}  -  \ln cos \: x \right)}

 \small\rm \longrightarrow   \dfrac{dy}{dx} =   \dfrac{  - y \:tan \: x}{ \left( \frac{1 - y \ln \: cos \: x}{y} \right)}

 \small\rm \longrightarrow   \dfrac{dy}{dx} =   \dfrac{  -  {y}^{2}  \:tan \: x}{1 - y \ln \:cos \:  x}

 \small\rm \longrightarrow   \dfrac{dy}{dx} =   \dfrac{  -  {y}^{2}  \:tan \: x}{1 - y \ln( \:cos \:  x)}

Therefore,

  \purple{\boxed{ \small\sf \implies  \dfrac{d}{dx} \left({cos \: x}^{cosx^{cos \: x^{... \infty}}}  \right) =  \dfrac{  -  {y}^{2}  \:tan \: x}{1 - y \ln( \:cos \:  x)}}}

Similar questions